0T

Instituto Politécnico
de Viana do Castelo

USING SMART CONTRACTS TO ENHANCE
AN INDUSTRIAL SYMBIOSIS PROCESS

Ricardo Miguel Silva Gongalves

Escola Superior de Tecnologia e Gestao




g

‘%S?‘

Instituto Politécnico
de Viana do Castelo

Nome completo do(a) candidato(a)

RICARDO MIGUEL SILVA GONCALVES

Nome do curso de Mestrado

Mestrado em Ciberseguranca

Trabalho efetuado sob a supervisao de
Professor Pedro Filipe Cruz Pinto

Professor Antdnio Alberto dos Santos Pinto

Setembro de 2022



Mestrado em
Ciberseguranca

Using Smart Contracts to Enhance an

Industrial Symbiosis Process

a master’s thesis authored by

Ricardo Miguel Silva Gongalves

and supervised by

Pedro Filipe Cruz Pinto

Professor Adjunto, Instituto Politécnico de Viana do Castelo

Anténio Alberto dos Santos Pinto

Professor Coordenador, Instituto Politécnico do Porto

This thesis was submitted in partial fulfilment of the requirements for the

Master’s degree in Cybersecurity at the Instituto Politécnico de Viana do Castelo

Ipve

18 January, 2022




Abstract

Industrial Symbiosis is a subfield of Circular Economy that tries to solve the issue of
the enormous amount of Industrial Waste. The main objective of this field is to create
networks of companies where a by-product/waste of one is one of the principal resources
of another one.

To run these types of Industrial Symbiosis networks, companies require the creation
and maintenance of trusted and transparent relationships between all entities. These
relationships are a constant challenge to maintain. When a new entity wants to join the
network, it requires trust in each current member.

In an Industrial Symbiosis context, a blockchain-based system can reduce the work
necessary to establish and maintain these networks. The system can serve as a ground
truth between all the entities operating at a national or global scale, removing all the
overhead of establishing and maintaining relationships between all parties.

This thesis proposes a scalable and modular blockchain architecture design using smart
contracts to enhance the industrial symbiosis process of the Pulp, Paper, and Cardboard
Production Sector companies in Portugal. The system will implement all the requirements
using smart contracts. The design comprehends all entities participating in the network,
namely the Pulp and Paper companies, the Sand Producers, the Mortar Producers, the
organization that uses the resulting material mixture, and the Environmental Portuguese
Agency (EPA) [13]. The base blockchain technology used to implement the architecture
is Hyperledger Fabric, by being a permissioned ledger, prevents unwanted accesses to the

network. Fabric also provides the required trust and transparency between all entities.

Keywords: blockchain. smart contracts. industrial symbiosis. hyperledger fabric.



Resumo

A Simbiose Industrial é um subcampo da Economia Circular que tenta solucionar o
problema da quantidade de Residuos Industriais. O principal objetivo deste campo é o de
criar redes de empresas, onde um subproduto/residuo de uma empresa é um dos principais
recursos de outra.

Para operar esses tipos de redes de simbiose industrial, as empresas exigem a criacao
e manutencao de relacionamentos confidveis e transparentes entre todas as entidades. A
manutencao de tais relacionamentos configura-se como um desafio constante. Quando uma
nova entidade deseja ingressar na rede, esta necessita confiar em todos membros atuais.

Num contexto de Simbiose Industrial, um sistema baseado em blockchain pode reduzir
o trabalho necessario para estabelecer e manter essas redes. O sistema pode servir como
uma verdade fundamental entre todas as entidades que operam em escala nacional ou
global, removendo toda a sobrecarga de estabelecer e manter relacionamentos entre todas
as partes que participam.

Esta tese propoe um projeto de arquitetura de blockchain escalavel e modular utili-
zando smart contracts para potencializar o processo de simbiose industrial das empresas
do Setor de Produgao de Pasta, Papel e Cartao em Portugal. O sistema implementa
todos os requisitos usando smart contracts. O projecto abrange todas as entidades parti-
cipantes na rede, nomeadamente as empresas de Pasta e Papel, os Produtores de Areia,
os Produtores de Argamassas e a Agéncia Portuguesa do Ambiente [13]. A tecnologia de
blockchain de base usada para implementar a arquitetura é Hyperledger Fabric, sendo per-
missioned impede acessos indesejados a rede. O mecanismo também fornece a confianga

e a transparéncia necessarias entre todas as entidades.

Palavras-chave: blockchain. smart contracts. simbiose industrial. hyperledger fa-

bric.



Aknowledgements

The fulfillment of this thesis required enormous effort, commitment, devotion, and
focus during this last year. It would be impossible to develop this work without the
support and help of some people, so I would like to mention here my sincere gratitude.

I want to thank Professors Pedro Pinto and Anténio Pinto, supervisors of this thesis,
for their support, knowledge, and valuable contributions to this document. Overall, thank
you for escorting me on this journey.

I also want to thank all friends and colleagues who, directly or indirectly, contributed
and helped with all the patience, care, and energy they provided during this work.

Finally, I want to thank my family for always supporting me and pushing me further

in my academic progress.



Contents

List of Figures

List of Tables

List of Listings

List of Abbreviations

1 Introduction

1.1 Context . ... ........
1.2 Objective . . ... ... ...
1.3 Contributions . . . . . .. ..
1.4 Organization . . ... ....

2 Background and Related Work

2.1 Blockchain & Smart contracts

2.2 Ethereum . . . . . .. ..
2.3 Hyperledger Fabric . . . . . . .. ...
2.3.1 Orderers . . . . . . .. e
2.3.2 Peers. . . . ..
2.3.3 Chaincode . . . . . . . . . ..
2.3.4 Channels . . . .. .. .
2.4 Etherum vs Hyperledger . . . . . . . .. .. ... ... .. ...
2.5 Related Work on Application of smart contracts . . . .. ... ... .. ..

ii

vi

vii

ix



3 Proposed Solution 15

3.1 Requirements . . . . . . . . .. 16
3.2 Design . . . ... 16
3.3 Architecture . . . . . ... 19
4 Implementation 22
4.1 General files . . . . . .. 23
4.2 Unit . . . .. e 27
4.2.1 Structure . . . .. ..o 27
422 GetUnitID . . . . . . .. o 28
423 Create Unit . . . . . . .. ... 28
424 Unit Exists . . . . .. . Lo 30
425 Get Unit . . . . . . . . 31
42,6 List Units . . . . . . . .. oo 33
4.2.7 Delete Unit . . . . . . .. o o 34

4.3 Product . . . . . . e 35
4.3.1 Structure . . . . . . ... 35
432 Get Product ID . . . . . . . ... 36
4.3.3 Product Exist . . . . . . ... Lo 37
4.34 Create Product . . . . . . .. .. L 37
4.3.5 Get Product . . .. ... . 39
4.3.6 List Products . . . . . . . . ... 41
4.3.7 Delete Product . . . . . . .. ..o 42

4.4 Organization . . . . . . . .. . 43
4.4.1 Structure . . . . . ... 43
4.4.2 Get Organization ID . . . . . ... ... Lo 45
4.4.3 Organization Exist . . . . . .. . ... oL 45
4.44 Create Organization . . . . . . . .. ... .. ... ... ... ... 45
4.4.5 Update Organization . . . . . . . . . .. .. ... 47
4.4.6 Get Organization . . . . . . . . . ... Lo 49
4.4.7 List Organizations . . . . . . . . .. . . 51

iii



4.4.8 Delete Organization . . . . . . . . ... ...
4.5 Order . . . . . .
4.5.1 Structure . . . . .. ...
4.5.2 Order Type . . . . . . . o o o
4.5.3 Order Status . . . . . . . . . . e
454 Get Order . . . . . . . . e
455 Order Exist . . . . . . . . .
4.5.6 Create Order . . . . . . . . . . . e
4.5.7 Close Order . . . . . . . . . . e
458 Get Order . . . . . . . . e
4.5.9 List Orders . . . . . . . . . . . e
4.6 Transaction . . . . . . . . . . e
4.6.1 Structure . . . . ...
4.6.2 Transaction Status . . . . . . . . . . . ...
4.6.3 Get Transaction ID . . . . . . . ..o
4.6.4 Transaction Exist . . . . . . . .. ... o oo
4.6.5 Make Transaction . . . . .. ... ... ... ... ..
4.6.6 Change Transaction Status . . . . . .. .. .. .. ... ... .. ..
4.6.7 Get Transaction . . . . . . . . ..o
4.6.8 List Transactions . . . . . . . .. .. .. L oo
5 Results and Analysis
5.1 Creation a New Organization . . . . .. .. ... .. ... ... .......
5.2 Removing an Organization. . . . . . . . .. ... ... .. ...
5.3 Creating anew sell order . . . . . . .. ... ... ... ... ...,

5.4 Buying

6 Conclusion

References

aproduct . . . . ... e

iv

84
84
85
85
86

90

92



List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4

4.1

Industrial Symbiosis network scenario . . . . . ... ... ... ... ..., 2
Example blockchain . . . . . . ... o o o 6
Broken blockchain . . . . . ... Lo Lo 7
Valid blockchain . . . . . . . ... 8
Trial and Error Proof-of-Work (PoW) . . .. ... ... ... ... ... 9
Endorsement and Commitment peer . . . . . . .. .. ... 0L 11
Channels Example . . . . . . . ... 11
Industrial Symbiosis Network for the Fluidized Bed Sands (FBS) case study 16

Data Relationship Diagram . . . . . .. .. ... ... ... ... .. .... 17
Use Cases . . . . . o o i 18
Architecture of the proposed solution . . . . . . .. ... ... ... ..... 19
File structure . . . . . . ..o 22



List of Tables

2.1 Traditional vs Smart contracts . . . . . . . ... ...

2.2 Differences between Hyperledger Fabric and Ethereum

vi



List of Listings

4.1 main.go file contents . . . .. ... o 23
4.2 attributes roles definition . . . . .. .. Lo oL L 23
4.3 attributes.go file contents . . . . .. ..o oL 24
4.4 docgofilecontents . . . . . ... 25
4.5 contract.go file contents . . . . . ... 26
4.6 Price structure . . . . . .. 26
4.7 Unit Structure . . . . . . . ... 27
4.8 Get Unit ID . . . . . . oo 28
4.9 Create Unit . . . . . . . . . 29
4.10 Unit Exist . . . . . . oo 30
4.11 Get Unit and Get Unit Inner . . . . . . .. ... .. oL 31
4.12 List Units . . . . . . o o 33
4.13 Delete Unit . . . . . . o0 34
4.14 Product Structure . . . . . . .. L 35
4.15 Get Product ID . . . . . . . ... 36
4.16 Product Exist . . . . . . ..o 37
4.17 Create Product . . . . . . . . ... 37
4.18 Create Product . . . . . . . . . . .. 39
4.19 List Products . . . . . . . .. Lo 41
4.20 Delete Product . . . . . . . . L 42
4.21 Organization Structure . . . . . . . . . . ... Lo 43
4.22 Get Organization ID . . . . . .. .. .. Lo o 45
4.23 Organization Exist . . . . . . .. ... oo 45

vii



4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
5.1

0.2

5.3

5.4

9.5

Create Organization . . . . . . . . . . .. .. 45

Update Organization . . . . . . . . . ... 47
Get Organization and Get Organization Inner . . . . . . .. .. .. .. ... 49
List Organizations . . . . . . . . . . . . 51
Delete Organization . . . . . . . . . .. ... . 52
Order Structures . . . . . . . . . . L Lo 53
Order Mapper . . . . . . . . . o 54
Order Type . . . . . o . o o 55
Order Status . . . . . . . . oo 55
Build Order ID . . . . . . . . . 56
Order Exists . . . . . . . . 57
Create Order . . . . . . . . . . 58
Close Order . . . . . . . . e 61
Get Order . . . . . . . . e e 63
Get Order Imner . . . . . . .. .. L 63
List Orders . . . . . . . . . e 64
Transaction Structure . . . . . . . . . . ... ... 69
Transaction Status . . . . . . .. ... L 70
Get Transaction ID . . . . . . . . .. L 72
Transaction Exist . . . . . . . ... Lo oo 72
Make Transaction . . . . . . . . . .. L 73
Change Transaction Status . . . . . . . ... ... ... ... ... ..... 76
Get Transaction and Get Transaction Inner . . . . . . ... ... ... ... 79
List Transactions . . . . . . . . . . . . L 81
List Products . . . . . . . . . . L 85
Create Order . . . . . . . . . . . 86
List Orders . . . . . . . . e 86
Make Transaction . . . . . . . . . . ... L 88
List Transactions . . . . . . . . . . . .. L 88

viii



List of Abbreviations

CA Certificate Authority

CLI Command-Line Interface
EPA Environmental Portuguese Agency
FBS Fluidized Bed Sands

PoS Proof-of-Stake

PoW Proof-of-Work

ix



Chapter 1

Introduction

The term ”symbiosis” refers to ”a close connection between different types of organ-
isms in which they live together and benefit from each other” [26]. In an industry context,
an Industrial Symbiosis can be considered as a mutually beneficial relationship among
companies to achieve a productive usage of by-products and waste [9]. The Industrial
Symbiosis has a collection of approaches to gain an advantage by involving physical ex-
changes of materials, through local and regional economies [8]. This happens due to the
trade of by-products and utility sharing that occurs between industries, which include the
reuse and commercialization of waste that can be used as secondary raw material [17].
As [8] cites, Industrial Symbiosis engages traditionally separate industries in a collective
approach to competitive advantage involving the physical exchange of materials, energy,
water, and/or by-products.

For the Industrial Symbiosis network to succeed in this scenario it requires that all these
companies create and maintain a relationship with each other; the bigger the network, the
hardest it is to maintain and create the relationships. Incoming companies must trust
and should be trusted by the companies already in the network, and the relation and
transactions between companies in the network should be clearly defined and auditable.
The Blockchain technology can meet this requirement by design since it allows Smart
Contracts to run automatically, executing all or parts of an agreement [24] and, at the
same time, each transaction that is recorded on the blockchain cannot be changed once
created, and can be verified or audited. The use of a cryptocurrency was not considered,

mainly because most countries still do not legally recognize cryptocurrencies as a legal

Page 1 of 95



Chapter 1. Introduction

form of money.

Currently, the field of Industrial Symbiosis has several issues when creating new and
larger networks. These issues are due to the requirement that all these companies create
and maintain a relationship with each other. On larger systems, the problem is more
noticeable because each entity on the system needs a connection with the necessary entities
to be trustable. The problem additionally exists when a new entity joins the network,
mainly due to the new entity being requiring to trust and be trusted by existing network
members.

Implementing a blockchain architecture as a support basis for on an Industrial Sym-
biosis system can solve the previously mentioned problems. The entities would only need
to trust the blockchain system and nothing else. The logic required to make the trades
and transactions between every member of the network can be implemented by smart

contracts that can run automatically on the network.

1.1 Context

The Portuguese Pulp, Paper, and Cardboard industry, an Industrial Symbiosis network

in Portugal, as described in [13], was the one selected to be better analysed.

Approved National Research Center and
EPA -
Laboratories
A Bel
o . Construction
s % 'be
m
i5g S5
FEE] CEE
® 9~ PN \oQ R
T2 R
9 N Flux 1
> L v Be Flux 5
e F\u\d\Zed Sand Mixture
gands Sand Producers < > Soil Fertilizers

Pulp. Paper and

4,
8‘9'70,,‘,/"," 6
Cardboard factories

/«\1(06

CELPA

Mortars Land Correction

Flux 3
Fluidized Bed
Sands

Figure 1.1: Industrial Symbiosis network scenario

Fig. 1.1 represents all the entities in the Industrial Symbiosis relationship and their
relations. The Industrial Symbiosis network is composed of Environmental Portuguese

Agency (EPA), National Research Centers, CELPA - Paper Industry Association, Sand

Page 2 of 95



Chapter 1. Introduction

Producers, Mortars, Construction, Soil Fertilizers, and Land Correction companies. These
companies exchange resources or fluxes with each other to gain advantages over their by-
products and waste. These resources are cheaper from the buyer’s perspective and earn
more profit margin from the seller’s perspective, as well as being more environmentally
friendly. The dashed arrows in the figure represent the indirect relationships, and the solid
arrows represent direct relationships, meaning they trade some resources between them.
There is also a difference between blue and orange arrows, the first being the resource

itself, and the latter is the monetary payment for the resource.

1.2 Objective

This thesis has the objective to propose and implement a blockchain architecture using
blockchain and smart contracts to solve the challenges of the Industrial Symbiosis system
depicted in Fig 1.1. To satisfy this objective the design has several requirements. The
architecture needs to be scalable and modular so that new members can join the network
without any issue and doing so as fast as possible. The network also needs a way for users
to sell their extra resources to another entity on the system. Finally, the design has to
have a way to monitor and audit the transactions made within the network. At the end
of the work herein, the IS network described in Fig 1.1 is expected to be fully supported
by a blockchain system, except for money transactions because, legally in Portugal, these

can not be made using cryptocurrencies.

1.3 Contributions

The contribution of this dissertation is a novel system for blockchain architecture
design to enhance the Industrial Symbiosis process of the Pulp, Paper, and Cardboard
Production Sector Companies in Portugal, providing the required trust and transparency
to a network to enhance their Industrial Symbiosis process for the scenario depicted in

Fig. 1.1. This contribution resulted in the following publication:

¢ Ricardo Gongalves, Inés Ferreira, Radu Godina, Pedro Pinto, and Anténio Pinto.

(2021). ”A Smart Contract Architecture to Enhance the Industrial Symbiosis Pro-

Page 3 of 95



Chapter 1. Introduction

cess Between the Pulp and Paper Companies - A Case Study”. In Blockchain
and Applications, Springer International Publishing, Cham, pages 252-260, 202.
https://doi.org/10.1007/978-3-030-86162-9_25 [16]. This paper received the

MDPI Systems Best Paper Award.

1.4 Organization

The organization of this document is as follows. In Chapter 2 the fundamentals of
blockchain are described, as well as details and comparisons between some blockchain
networks and frameworks. In Chapter 3 the requirements, design, and specification of the
proposed solution are described. Chapter 4 describes the implementation of the proposed
solution, as well as the explanation of some of its the source code. Chapter 5 describes some
common use cases for the network and all the processes around it. Finally, in Chapter 6,
conclusions are drawn, the results of the work are enumerated, and some future work is

identified.

Page 4 of 95


https://doi.org/10.1007/978-3-030-86162-9_25

Chapter 2

Background and Related Work

This chapter describes the background and related work on the current context. Sec-
tion 2.1 describes the blockchain and smart-contracts technologies. Section 2.2 describes
the fundamentals of Ethereum blockchain and the Section 2.3 the fundamentals of Hy-
perledger Fabric blockchain, two common blockchains supporting smart contracts. Next,
Section 5.4 compares the two blockchain technologies and identified the one best suited for

the work herein. Finalizing this chapter, Section 2.5 presents the identified related work.

2.1 Blockchain & Smart contracts

This section will describe the blockchain technology and will present the main logic
behind smart contracts, comparing them to regular contracts and showing how these work
in practice.

The popularity of blockchain technology has been increasing over the past years. This
exponential growth was mainly caused by bitcoin [25] popularity increase, as it also uses
blockchain technology. This technology is based on a chain of blocks linked to each other,
as represented in Fig. 2.1. Once a new block is created and inserted on the chain, the
new block will have a link to the previous block, in a form of an hash value, creating a
chain [25]. They all include the hash of the previous block except for the first one, which
is called the genesis block.

There are two types of blockchain: permissionless and permissioned [23, 12]. The

permissionless blockchain, also called public blockchain, is available to everyone. Anyone

Page 5 of 95



Chapter 2.

Background and Related Work

ID: 1

Previous Hash:
NONE

Hash: A1

ID: 6

Previous Hash:
E5

Hash: F6

Previous Hash:
F6

Hash: G7

ID: 2

Previous Hash:

A1

Hash: B2

ID: 5

Previous Hash:

D4

Hash: E5

ID: 8

Previous Hash:

G7

Hash: H8

ID: 3

Previous Hash:
B2

Hash: C3

Previous Hash:
C3

Hash: D4

ID: 9

Previous Hash:
H8

Hash: 19

Figure 2.1: Example blockchain

can create and track down blocks. On the other side, the permissioned blockchain, or
often referred to as private blockchain, has limited availability, only being accessible to a
certain group and not being publicly available. On this type of blockchain, there is no
anonymity like in a public blockchain.

Every full node in the network has a copy of the whole chain of blocks, this means that
every transaction is available to each member, making the transactions traceable [28].
This makes every transaction more transparent and removes the need for intermediaries,
allowing the process to be more efficient.

Information in the blockchain is immutable. To better exemplify this, let’s take a look
at Fig. 2.1. If a block in the middle of the chain is changed, Fig. 2.2, the chain is no longer
valid. To be valid, the blocks in the front must be recalculated, Fig. 2.3 [20]. To apply
the previous changes in every node in the network, a consensus algorithm should be used
in every block that was modified. This work would be too demanding in terms of resource
usage.

This is one of the biggest advantages of the blockchain, being a decentralized system
allows for the lack of a central authority controlling the transactions. If someone wants to
update the chain, they need to run the consensus algorithm of the network. In the case of

the bitcoin, the most popular one, the adopted consensus algorithm is the Proof-of-Work

Page 6 of 95



Chapter 2.

Background and Related Work

ID: 1

Previous Hash:

NONE

Hash: A1

ID: 6

Previous Hash:

E5

Hash: F6

Previous Hash:
F6

Hash: G7

ID: 2

Previous Hash:
A1

Hash: B2

ID: 20

Previous Hash:
D4

Hash: E20

ID: 8

Previous Hash:
G7

Hash: H8

ID: 3

Previous Hash:
B2

Hash: C3

Previous Hash:
C3

Hash: D4

ID: 9

Previous Hash:
H8

Hash: 19

Figure 2.2: Broken blockchain

(PoW)

[25]. Ome of the main disadvantages of this type of consensus algorithm is the

amount of resources, including energy, required to perform it.

Table 2.1: Traditional vs Smart contracts

Traditional contract Smart contract
Third Parties Government, etc None
Execution Time Days Minutes
Process Manual Automatic
Transparency None Full
Security Limited Cryptographic Methods
Cost High Low

Smart contracts are pieces of code, or programs, that contain rules on how a contract
must be executed. They automatically execute the terms described in them. When a
smart contract is created it is sent to the blockchain and validated by the network mem-
bers. Table 2.1 compares traditional contracts with smart contracts. This retrieves some

advantages in using smart contracts vs traditional contracts, these being:

e No third parties - There is no need for someone else other than the blockchain and

the parties on the contract in order to validate it.

e Automated - No need for human interaction.

Page 7 of 95



Chapter 2.

Background and Related Work

ID: 1

Previous Hash:
NONE

Hash: A1

ID: 6

Previous Hash:
E20

Hash: J21

ID: 7

Previous Hash:
J21

Hash: H22

ID: 2

Previous Hash:

A1

Hash: B2

ID: 20

Previous Hash:

D4

Hash: E20

ID: 8

Previous Hash:

H22

Hash: M23

ID: 3

Previous Hash:
B2

Hash: C3

Previous Hash:
C3

Hash: D4

ID: 9

Previous Hash:
M23

Hash: P24

Figure 2.3: Valid blockchain

e Fast - As there is no need for human validation, the process is much faster.

e Secure - Uses cryptographic algorithms to implement security and can’t be tampered

with.

e Trust - Removes the need for trust between the entities of the contract.

2.2 Ethereum

Ethereum is a public and open-source, blockchain-based, decentralized software plat-

form with the ability to run smart contracts released in 2015 [27]. Ethereum has its own
cryptocurrency, Ether, and allows anyone to send cryptocurrency to anyone else, for a
small fee. It also powers applications that everyone can use and no one can takedown,
the smart contracts. Once a smart contract is deployed in the Ethereum network it can-
not be modified or removed. Ether is the second-largest cryptocurrency currently on the
market [18].

Unlike Bitcoin that only has one goal, being a peer-to-peer virtual currency, Ethereum
has the capability of being programmable. This means that anyone can run programs
inside the network, the smart contracts [6].

Using smart contracts, written in Solidity,

Go, or any other programming language, developers can create their apps and run them

Page 8 of 95



Chapter 2. Background and Related Work

in a decentralized way. A popular analogy for smart contracts is vending machines, they
are programmed to automatically deliver specific items based on specific inputs.

Running these computer programs on the network requires some computational power.
To meet its computational requirements, every transaction or smart contract ran by the
network pays a fee, named "gas”. These fees are then paid to the users of the network
who provide their computational power. These users have the name of miners. Requiring
payment also provides some form of spam protection [6].

Miners work together in order to keep a consensus between all the nodes, Ethereum now
uses the PoW mechanism, it is moving to a Proof-of-Stake (PoS) mechanism gradually in
the next years. PoW and PoS are two examples of consensus algorithms that allow miners
to agree on account balances, transactions and their order, preventing users from ”double

spending” their coins and ensuring that the Ethereum blockchain is tamper proof [15].

GET BLOCK < (WAIT FOR BLOCK

TRANSACTIONS [ L TRANSACTIONS START
A

GENERATE
HASH

PUBLISH
VALID HASH

Figure 2.4: Trial and Error PoW

PoW requires users to go on an intensive competition of trial and error to find a valid
hash for a block, Fig. 2.4. A valid hash is required in order for a block to be added to the
chain. The first user to find a valid hash gets the reward. PoW makes an intensive use of
useless computational power due to the the trial and error step of the process. Moreover,
as the size of the PoW network increases, so does its energy requirements [15]. To address
this issue, Ethereum is moving towards a PoS algorithm. PoS has the same end goal of
the PoW but is much more environmentally friendly by significantly reducing the amount

of energy required to run the network [4].

Page 9 of 95



Chapter 2. Background and Related Work

2.3 Hyperledger Fabric

The Hyperledger Project was first created in December of 2015 by the Linux Founda-
tion. Hyperledger is a blockchain project that offers an open-source suite of frameworks
and tools to allow enterprises to create their blockchain networks. Using the enterprise-
ready permissioned blockchain tools, the business can create several modular blockchain
solutions to enhance the efficiency of their systems [10].

Huperledger Fabric is one of the tools provided by the Hyperledger suite. This is
intended as the foundation layer for creating applications with a modular architecture.
It has a plug-and-play design and every component can be changed independently [2].

Hyperledger Fabric was build from the ground up with the purpose of enterprise use.

2.3.1 Orderers

Other blockchains that are not permissionless anyone can participate in the consensus
process. Fabric, being permissioned, features a node called the orderer that does the
transaction ordering. Orderers also perform access control for channels, defining who can
read and write data to them, and who can configure them [7].

The ordering service has three phases, the proposal, the ordering and packaging, and
the validation and commit. In the first phase, the application sends the proposed ledger
change to the endorsing peers, the peers then return an endorsed transaction to the ap-
plication.

Then, in the second iteration, the returned endorsed transactions will be submitted to
the ordering service that will create the block of transactions. The block will eventually
be communicated to all peers on the channel for final validation and commit. The number
of transactions depends on the configuration made by the administrator. If the block is

considered as valid, it will be added to the ledger [2].

2.3.2 Peers

The peer nodes are the fundamental elements of the blockchain network. Nodes host
the chaincode and the ledgers, and are the entry point for applications or administrators

to send requests to the blockchain. As shown in Fig. 2.5, there are two types of peers:

Page 10 of 95



Chapter 2. Background and Related Work

commitment peers and endorsement peers. Commitment peers only store the ledger.

Endorsement peers store the ledger and also run chaincode [2].

CHAINCODE .

BLOCKCHAIN BLOCKCHAIN
Endorsement Commitment
Peer Peer

Figure 2.5: Endorsement and Commitment peer

Two types of requests can be made: query or update. The return of a query is
immediate since all the required information is the peer’s local ledger. An update request
is different because the peer can’t simply update its ledger, it firstly needs to obtain the
approval from the other peers. In this case, peers send the desired transaction to the

orderer component, and return a proposed update to the application.

2.3.3 Chaincode

Chaincode is a program that implements a specific interface. It can be written in
different languages like Go, JavaScript or Java. This code runs in a docker container
inside the endorsing peer. It initializes and manages the ledger state according to actions
submitted by applications [7]. These are considered ”smart contracts” because they

handle business logic as agreed by its members.

2.3.4 Channels

( CHANNEL C1 )
N\ A
PEER A PEER B PEER C
A 4 A
( CHANNEL C2 )

Figure 2.6: Channels Example

Channels are private subsets of interaction between two or more specific network mem-

Page 11 of 95



Chapter 2. Background and Related Work

bers. A channel enables confidential transaction exchange between such subsets of network
members. There is no maximum number of channels on a Fabric network and every trans-
action must run within the context of a channel. A member can only view the transactions
of the channels they take part in [3]. For example, Fig. 2.6 assumes a system with three
entities (A, B, and C), and that two channels were set up (C1 and C2) as follows: channel
C1 connecting entities A and B; channel C2 connecting entities B and C. The transactions
made by entity A are not visible to entity C, and consequently, transactions from C are
not visible to A. This separation of ledger data, by channel, enables the coexistence, for

instance, of market competitors on the same blockchain network.

2.4 Etherum vs Hyperledger

Table 2.2 compares both solutions [29]. Ethereum is permissionless, offers a built-in
currency, and its transactions are transparent and open to everyone. While on the other

hand, Hyperledger Fabric is permissioned and does not have a built-in cryptocurrency [2].

Table 2.2: Differences between Hyperledger Fabric and Ethereum

Hyperledger Fabric Ethereum
. . Business to Contract and
Purpose Business to Business . .
generalized applications
Consensus Pluggable Proof of Work
Consensus Algorithm
Access Permissioned Permissionless
Tra.m‘sa%c.tlon Confidential Transparent
visibility
Native Currency No Yes, Ether
C++, C#, Go,
Programmin Haskell, Java, JavaScript, .
Lfnguages ° Python, Ruby, Rust, Solidity, Go
Elixir, Erlang

Comparing both, one can conclude that, for the envisioned scenario, Hyperledger Fab-
ric is the adequate solution. The required use of a cryptocurrency by Ethereum, and the
associated costs for smart contract execution are a clear drawback. These add complexity
and introduce operational cost volatility due to the fluctuation of Ether’s price. Another

issue for the adoption of Ethereum relies on its permissionless nature; in the envisioned

Page 12 of 95



Chapter 2. Background and Related Work

scenario only selected entities should be able to create transactions or alter the state of

the ledger.

2.5 Related Work on Application of smart contracts

Alexandris et al, in [1], proposed a blockchain-based system as the basis for a col-
laborative circular economy business model that consists of assets transitioning between
operators. The proposed mechanism enables assets monitoring by the involved entities.
It also allows auditing by third parties such as regulators of the state. They concluded
that the adoption of a blockchain-based in a Industrial Symbiosis network brings benefits
in regulated environmental jurisdictions, allowing entities to monitor the system easier.

Alexa Bockel et al, in [5], addresses the field of blockchain for a circular economy
and review current developments. In the article, he conducts a research-practice gap
analysis. The process uses a methodical review and qualitative examination of 57 distinct
documents. They concluded three findings after the review. Two of them are that a
clear terminology of blockchain types, their technical properties, and benefits is lacking
in research, and is that trust and verification are the major possible advantages but a
challenge to create.

Kouhizadeh et al, in [22], identified both blockchain and circular economy as the two
new concepts that can positively impact the way we live in the future. In their work,
they survey companies’ cases and assess how blockchain will promote advances in the
circular economy by linking blockchain to the multiple dimensions of the ReSOLVE model
(Regenerate, Share, Optimize, Loop, Virtualize, and Exchange). They conclude with a list
of research propositions, restraints, and future investigations. In a previous work [21], the
same authors focused on the particular problem of product deletion in the same circular
economy context while using blockchain as a supporting technology. Despite being a
field of the circular economy, product deletion companies sometimes forget about it. The
authors present a hardy research plan to assess the multiple links amongst technology,
policy, commerce, and the natural environment.

The PlasticCoin cryptocurrency [19], proposed within the PlasticTwist H2020 research

project, was developed to foster plastic reuse by citizens, promoting the circular economy

Page 13 of 95



Chapter 2. Background and Related Work

while maintaining trust among its users. They make use of the Hyperlegder Fabric and
developed a token following the concept described in the ERC-20 [11] standard of the
Ethereum platform. These tokens are then printed and handed out, as scratchpads, to
deserving people so that they can later claim their coins for reusing plastic materials.
From the surveyed related work, one can conclude that the circular economy in gen-
eral, and network in particular, can benefit from the adoption of blockchain and related
concepts, such as cryptocurrencies and smart contracts. Moreover, the use of smart con-
tracts or cryptocurrencies will be dependent on each specific case; while smart contracts
can be used for overall system automation, the cryptocurrencies can be used to attract
citizens and foster their involvement. The solutions found do not fulfil the entirely of the
requirements for this network, missing the fact of being able to trade resources, not just

plastic, in the network.

Page 14 of 95



Chapter 3

Proposed Solution

The proposed solution aims to support the existing Industrial Symbiosis network of the
Pulp, Paper and Cardboard industry companies in Portugal, better described in [14, 13].
In this Industrial Symbiosis network, companies create the Fluidized Bed Sands (FBS) as
a by-product and require normal sand for combustion. Fig. 3.1 depicts the network that
is formed within this Industrial Symbiosis process, considering the different entities and
their relationships.

Five actors are depicted with direct or indirect flows: Pulp and Paper companies, Sand
Producers, Mortar Producers, the organizations that use the resulting material mixture,
and EPA. Pulp and Paper companies use fluidized bed boilers for energy production. In
fluidized bed boilers, a small amount of sand (regular sand) is used to maintain the energy
production, this generates processed sand named FBS. The agency that represents every
company in the pulp and paper industry is CELPA, the Portuguese Association of Pulp,
Paper and Cardboard Producers.

The mortar and sand industries have the potential to use this FBS in their industrial
process. Finally, industrial manufacturers of fertilizer, building materials, and other indus-
tries, can use the sand mixture to manufacture their products. The dashed lines indicate

that the EPA monitors the trades between each entity.

Page 15 of 95



Chapter 3. Proposed Solution

AUDITOR

ENVIRONMENTAL

PORTUGUESE frrrrrrsssnsnncenansnsnnannnnns .
AGENCY .

MATERIAL MIXTURE

SAND PRODUCER USAGE

/" PULP AND PAPER -

ASSOCIATION

—

PULP AND PAPER
COMPANY

MODERATOR ORGANIZATION

FOUNDER

MORTAR
PRODUCER

ORGANIZATION

Figure 3.1: Industrial Symbiosis Network for the FBS case study
3.1 Requirements

The case study requires that the design follows some specific requirements. The ar-
chitecture must be easily scalable. This requirement requires that new nodes can join
without any downtime and not demanding a long setup time. The network must also be
modular to allow for swapping or removal of any component if needed. Auditability is
also a must-have in the system, this means that every transaction must be visible to EPA,
the organization that audits all transactions. It also has to be private, in this case, per-
missioned, to keep all prevent unauthorized access to the data. Finally, as the last main
requirement, the network must allow its participants to trade their by-products/waste
materials between them. This requirement means allowing them to list and buy products

from the network.

3.2 Design

The information is stored in five different structures, each one for a different purpose

(see Fig. 3.2). These data types are organizations, transactions, orders, products, and

Page 16 of 95



Chapter 3. Proposed Solution

units. Organizations represent each entity in the network, it will have a unique identifier
so it can be identified inside the network. The structure also has the name, description,
address, and phone number of the organization, some basic information to better identify

the entity for the user.

amount name
id —r—  status id —r—_ description
. N . . 1 .
id — Owns Transaction —_ Quantify Unit
N N
name —
1
description ——‘ Organization Represents Has
1
address —
1 N
PIEE TN Owns —NE@L— Sells L Product
number
id ——_ amount id ——_ description
) price
price value —— name
exponent
price —— status
currency
type

Figure 3.2: Data Relationship Diagram

To sell products, users need to create Orders. This data type has a unique identifier,
the amount of product that wants to sell. It also has the price represented by the value
in an integer format, currency, and exponent. Orders also have different statuses, for
example, open or closed status. If another company buys products from these orders a
transaction type is created. The structure has a unique identifier, the amount bought,
and the status, it also has the order id to link back to the order. Finally, there is two data
type that just represents the products that can be traded in the system, as well the units
of those products. Both types have a unique identifier, name, and description.

There are four types of entities, the founder, the moderator, the auditor, and the
normal organization. Each entity will have two or three of the five roles in this design, the
founder, the moderator, the auditor, the organization admin, and the organization user.

The envisioned use cases are shown in Fig. 3.3.

Page 17 of 95



Chapter 3. Proposed Solution

List Products
Organization
Founder
Manage List
Moderators Transactions

—— | Monitor

A

Manage

—>
S Products

Moderator | ————

—>{ Manage Units

bo06)

List
Organization
0 4
Manage
CompanyAdmin | ———— >{ Organization
Users

Manage Orders <«—

CompanyUser

Manage
Transactions T

Figure 3.3: Use Cases

The auditor role will permit the users to read all the information on the network. The
next two higher roles, the organization admin and user, can also manage the order and
transactions of the user’s company. The admin also has the job of managing the company’s
users. The moderator and the founder roles have all the previous permissions with the
addition of extra ones. The moderator can create new products and units so they can be
traded in the network. The founder, the highest role in the network, will have the task of
creating and managing the company admins, this means when an organization wants to
join the network, that is responsible to create the company admin for that entity.

The design is based on the Hyperledger Fabric architecture. Fig. 3.4 shows the archi-
tecture of the proposed solution. It includes one channel where all transactions will run,
this way it is possible to accomplish the audit requirement. The auditor will have access
to the channel, thus enabling access to all transactions in the network.

It will also introduce one peer and one Certificate Authority (CA) for each entity that
is in the network, this helps to have a scalable and modular blockchain. Each entity just

needs to a peer node and a CA to join the network. The design also includes an orderer

Page 18 of 95



Chapter 3. Proposed Solution

MODERATOR ORGANIZATION
CA AUDITOR CA CA

| |
| | !

MODERATOR AUDITOR ORGANIZATION
PEER PEER PEER

,, l l

[ TRANSACTION CHANNEL
FOUNDER
PEER ORDERER
A A
FOUNDER CA

Figure 3.4: Architecture of the proposed solution

node that handles the packing and ordering of transactions into blocks.

The steps to be performed by two entities, A (the seller) and B (the buyer), are as
follows. Firstly, both entities must be registered and receive their corresponding certifi-
cates, including their permissions. A can then create an order by identifying the product,
its unit, quantity, and price. After this, B can browse the order’s list and select the order
issued by A. By selecting the order and specifying the amount they want to receive, will
trigger the creation of a new transaction. At this point, B receives an invoice from A and
has to make the payment, subsequently marking it as "paid” by changing the transaction
state. A, after receiving the payment, changes the state of the transaction to ”deposit
received”. When the cargo is ready to start the delivery, the transaction state is changed
again to ”in progress”. Finally, when the products are delivered to B, the process is done,

and the transaction is closed.

3.3 Architecture

The proposed architecture (see Fig. 3.4) assumes an implementation on a blockchain

network built with Hyperledger Fabric and comprehends the following 4 peers: the founder

Page 19 of 95



Chapter 3. Proposed Solution

peer (which is the network founder and maintainer), the moderator peer (that has the role
to moderate the network), the auditor peer (who audits all the transactions and relations
within the network), and the organizations’ peer (a peer per any other company in the
network). Furthermore, the founder entity will also have an extra component, the orderer
node.

The architecture also comprehends one CA for each entity, which will provide their
users with credentials. The last component in the design is the transaction channel, it
comprises only one channel to convey transactions between all entities because there was
no need for companies to keep their transactions confidential, or hidden from the other
entities. Using only one channel means that all transactions are available to all entities,
but also facilitates the existence of a monitoring agency, one of the identified requirements.
Another identified requirement is that every company, except the monitoring agency, needs
to create trade offers for their by-products. These offers then need to be disseminated
within the network so that other entities will be aware of them, thus being able to buy
the related by-product and registering a new transaction in the blockchain.

To access the system, users need a certificate proving their identity. Organization
Admins generate these certificates for users inside each organization. The Founder entity
generates a new certificate for each Organization Admin when it joins the network. Scaling
the platform can be done easily by adding a new organization CA and peer and connect
it to the transaction channel.

In this setup, two key decisions were necessary: what database to use on the peers
and what type of ordering service should be adopted by the Orderer. With respect to the
selected database of the two available in Hyperledger Fabric, Level DB and CouchDB, the
CouchDB was the one adopted. It has support for richer queries than those supported by
LevelDB, a key-based database. Regarding the ordering service, Raft was selected because
of being the one recommended by Hyperledger Fabric in its documentation'. The other
two options available are Solo and Kafka. Solo only allows for the use of a single Orderer.
Kafka is a distributed platform with multiples functionalities other than data storage,
which would increase the overall system complexity, hampering its manageability.

For access control and authorization, the proposed solution will use the Hyperledger

!See https://hyperledger-fabric.readthedocs.io/en/latest/couchdb_tutorial.html

Page 20 of 95


https://hyperledger-fabric.readthedocs.io/en/latest/couchdb_tutorial.html

Chapter 3. Proposed Solution

Fabric Attribute-Based Access Control. This method depends on attributes that are
added to the certificates of the users when these certificates are created. These attributes
are created by concatenating the data type and the type of access to be authorized,
separated by a dot. Taking the example of product creation, only users with the attribute

”products.create” will be allowed to create new products in the proposed solution.

Page 21 of 95



Chapter 4

Implementation

The implementation was in Go, this was chosen because is my main language. Go
appeared at Google in 2009, it was designed to mimic the core of C. The code is structure
as Fig.4.1, it has individual files for each entity, the main.go file is the entry point for the

chain code.

6o attributes.go

6o contract.go

co doc.go

¢o events.go

6o go.mod

60 main.go

6o order.go

6o orderstatus.go
6o ordertype.go
6o organization.go
G0 price.go

6o product.go

6o transaction.go
6o transactionstatus.go

6o unit.go

Figure 4.1: File structure

Page 22 of 95



Chapter 4. Implementation

4.1 General files

In the main.go file, the SmartContract structure is initialized with the Hyperledger
fabric package contract API, fabric-contract-api-go/contractapi, Listing 4.1. It has a
field named checkPermissions has true. This field is used to make the chain code check
for the ABAC permissions for debug purposes. If the creation of the chain code or has
an error during the runtime it just returns it to this main function, logs it, and stops the

chain code.

Listing 4.1: main.go file contents

func main() {
assetChaincode, err := contractapi.NewChaincode(&SmartContract{
checkPermissions: true,
})
if err != nil {

log.Panicf(”Error_creating _asset —transfer —basic_chaincode: _%v”

if err := assetChaincode.Start (); err != nil {

log . Panicf(”Error_starting._asset —transfer —basic_chaincode: _%v”

The attributes file, attributes.go in his content, has the attributes keys in constants
variables with the values that the CA issues in the certificates, Listing 4.2. The file also
has a function that takes the TransactionContext and the attribute it wants to check for,
Listing 4.3. If the attribute is present or checkPermissions is false it returns no error, nil,

otherwise, it will return an error “not authorized”.

Listing 4.2: attributes roles definition

const (
UnitsCreate Attribute = ”units.create”
UnitsDelete Attribute = ”units.delete”

Page 23 of 95



Chapter 4. Implementation

UnitsRead

Attribute =

UnitsUpdate Attribute =

Punits.read”

"units.update”

ProductsCreate Attribute "products.create”
ProductsDelete Attribute "products.delete”
ProductsRead Attribute ”products.read”
ProductsUpdate Attribute ”products.update”
OrganizationsCreate Attribute = ”organizations.create”
OrganizationsDelete Attribute = ”"organizations.delete”
OrganizationsRead Attribute = ”"organizations.read”
OrganizationsUpdate Attribute = ”organizations.update”
OrdersCreate Attribute = ”orders.create”

OrdersDelete Attribute = ”"orders.delete”

OrdersRead Attribute = ”orders.read”

OrdersUpdate Attribute = ”orders.update”
TransactionsCreate Attribute = ”transactions.create”
TransactionsDelete Attribute = ”transactions.delete”
TransactionsRead Attribute = ”transactions.read”
TransactionsUpdate Attribute = ”transactions.update”

Listing 4.3: attributes.go file contents

type Attribute string

func (a Attribute) String() string {

return string(a)

Page 24 of 95



Chapter 4. Implementation

func (s *SmartContract) HasPermission(ctx contractapi.TransactionContextInterf
if !s.checkPermissions {

return nil

err := ctx.GetClientldentity (). AssertAttributeValue (att.String (), "tru
if err != nil {

return fmt.Errorf(”not_authorized”)

return nil

The doc.go file has two helper types to help with storing in the CouchDB database,
Listing 4.4. It has DocType type that represents the document type of document in the
database to be easier to search. The Doc structure has the fields that every structure
needs to be identified in the database, it will compose all the other structures saved in the

database.

Listing 4.4: doc.go file contents

type DocType string

type Doc struct {
Type DocType ‘json:” doc_type” ¢
CreatedBy string ‘json:” created_by” °

UpdatedBy string ‘json:” updated_by”‘

The file in Listing 4.5, contract.go, has the main strcuture composed by the contrac-
tapi. Contract from the hyperledger fabric package. It also has the implementation two
methods for the SmartContract type. The first one, GetSubmittingClientldentity, receives
as parameter the TransactionContexrt and returns the unique identifier of the user re-

questing the transaction or an error. The second one, GetSubmittingClientOrganization,

Page 25 of 95



Chapter 4. Implementation

receives as parameter the TransactionContext and returns the organization of the user or

an error.

Listing 4.5: contract.go file contents

type SmartContract struct {

func (s

func (s

contractapi.Contract

checkPermissions bool

xSmartContract) GetSubmittingClientIdentity (ctx contractapi.Transactio
b64ID, err := ctx.GetClientIdentity (). GetID ()
if err != nil {
return 7”7, fmt.Errorf(” failed _to_read_clientID: %v”, err)
}
decodeID, err := base64.StdEncoding.DecodeString (b64ID)
if err != nil {
return 7”7, fmt.Errorf(” failed .to_base64._decode._clientID : %v” |

}

return string(decodelD), nil

xSmartContract) GetSubmittingClientOrganization(ctx contractapi.Trans:

return ctx.GetClientIdentity ().GetMSPID ()

The price data structure, Listing 4.6 is composed of three fields, amount, this represents

the amount in an integer format number without decimal places, currency, the currency

type of the amount, and the exponent, the exponent of the currency, this shows how many

decimal cases the amount has.

Listing 4.6: Price structure

type Price struct {

Amount uint32 ‘json:” amount”

Page 26 of 95



Chapter 4. Implementation

Exponent uint32 ‘json:” exponent” *
Currency string ‘json:” currency”
}
4.2 Unit

4.2.1 Structure

There is two structures representing units in Listing 4.7, Unit and UnitInner, these
two have different purposes, Unitlnner represents the data stored in the database with
the aditional composing Doc type. There is a function to parse between the Unitinner

and Unit easier.

Listing 4.7: Unit Structure

const (

UnitDoc DocType = ”unit”

type Unitlnner struct {

Doc
1D string ‘json:”id”
Name string ‘json:”name” ‘

4

Description string ‘json:” description”

Exponent uint32 ‘json:” exponent” *

type Unit struct {

1D string ‘json:”id” ¢

Name string ‘json:”name” ‘

Description string ‘json:” description”®

Exponent uint32 ‘json:” exponent” ¢

Page 27 of 95



Chapter 4. Implementation

func FromUnitInner(u *UnitInner) xUnit {
if u = nil {

return nil

return &Unit {
ID: u.ID,
Name: u . Name,
Description: u.Description ,

Exponent : u. Exponent ,

4.2.2 Get Unit ID

The GetUnitID, Listing 4.8, build a storage unit id of the input from the user by adding

the unit document type.

Listing 4.8: Get Unit ID

func (s *SmartContract) GetUnitID (. contractapi.TransactionContextInterface, i

return string(UnitDoc) + 7.7 + id

4.2.3 Create Unit

To create a new unit the user need to invoke the CreateUnit method with the id,
name, description, and exponent. These parameters are then pass through to the method
in Listing 4.9. It first if the current context user has the permissions for creating a unit.
Then checks if a unit with the same id already exists, if so returns an error saying it

already exists, otherwise continues to the next step. After that, the client id is retrieved

Page 28 of 95



Chapter 4. Implementation

from the context, and the new unit is built. Finally, the unit is committed to the state,

creating a new unit ready to be retrieved.

Listing 4.9: Create Unit

func (s *SmartContract) CreateUnit(ctx contractapi.TransactionContextInterface
if err := s.HasPermission(ctx, UnitsCreate); err != nil {

return err

exists , err := s.UnitExist(ctx, id)
if err != nil {
return err

}

if exists {

return fmt.Errorf(”the_asset %s_already._exists”, id)
}
clientID | err := s.GetSubmittingClientIdentity (ctx)
if err != nil {

return err

doc := Doc{
Type: UnitDoc,
CreatedBy: clientID ,

UpdatedBy: clientID ,

unit := Unitlnner{
ID: s.GetUnitID (ctx, id),
Name: name,

Page 29 of 95



Chapter 4. Implementation

Description: description ,

Exponent : exponent ,

Doc: doc,
}
assetBytes , err := json.Marshal(unit)
if err != nil {

return err

err = ctx.GetStub (). PutState(unit.ID, assetBytes)
if err != nil {

return err

return nil

4.2.4 Unit Exists

Both methods UnitExist and UnitsExist, Listing 4.10, checks if units exist, the first
one takes a single id, the second one receives a list of ids and checks if they exist in the

current state.

Listing 4.10: Unit Exist

func (s *SmartContract) UnitExist(ctx contractapi.TransactionContextInterface ,
assetJSON | err := ctx.GetStub (). GetState(s.GetUnitID (ctx, id))
if err != nil {

return false, fmt.Errorf(” failed _to_.read_from_world_state: _%v”

return assetJSON != nil, nil

Page 30 of 95



Chapter 4. Implementation

func (s *SmartContract) UnitsExist(ctx contractapi.TransactionContextInterface

for _, id := range ids {
e, err := s.UnitExist(ctx, id)
if err != nil {

return err

}
if le {

return fmt. Errorf(” unit _%s._does_not_exists”, id)

return nil

4.2.5 Get Unit

The GetUnit, Listing 4.11 receives a unit id from the parameters and returns a unit or
an error. It checks to see if the client requesting the operation has the correct attribute
role and gets the unit from the state. Before sending the unit back to the client it removes
the storage id that adds the document type. The Listing 4.11 represent the same method

but instead of returning the type Unit, returns UnitInner.

Listing 4.11: Get Unit and Get Unit Inner

func (s *SmartContract) GetUnitlnner(ctx contractapi.TransactionContextInterfa

if err := s.HasPermission(ctx, UnitsRead); err != nil {

return nil, err

assetBytes , err := ctx.GetStub (). GetState(s.GetUnitID (ctx, id))

if err != nil {

Page 31 of 95



Chapter 4. Implementation

return nil, fmt.Errorf(” failed _to_get_asset %s: %v”, id, err)
}
if assetBytes =— nil {

return nil, fmt.Errorf(” asset %s._does.not_exist”, id)

var unit Unitlnner
err = json.Unmarshal(assetBytes, &unit)
if err != nil {

return nil, err

unit . ID = strings. TrimPrefix (unit.ID, string(UnitDoc)+”_")

return &unit, nil

func (s *SmartContract) GetUnit(ctx contractapi.TransactionContextInterface, i
if err := s.HasPermission(ctx, UnitsRead); err != nil {

return nil, err

assetBytes , err := ctx.GetStub (). GetState(s.GetUnitID (ctx, id))
if err != nil {
return nil, fmt.Errorf(” failed .to_get_asset %s: %v”, id, err)

if assetBytes =— nil {

return nil, fmt.Errorf(”asset _%s._does_.not_exist”, id)

Page 32 of 95



Chapter 4. Implementation

var unit Unitlnner
err = json.Unmarshal(assetBytes, &unit)
if err != nil {

return nil, err

unit.ID = strings.TrimPrefix (unit.ID, string(UnitDoc)+”_")

return FromUnitInner(&unit), nil

4.2.6 List Units

The method in Listing 4.12, ListUnats, lists all the units currently saved in the state.

It first checks for permissions, then returns the units to the client.

Listing 4.12: List Units

func (s *SmartContract) ListUnits(ctx contractapi.TransactionContextInterface)

if err := s.HasPermission(ctx, UnitsRead); err != nil {

return nil, err

results , err := ctx.GetStub (). GetQueryResult (fmt. Sprintf( ‘{”selector”:
if err != nil {
return nil, fmt.Errorf(” failed _to_get_assets: %v”, err)

}

defer results.Close ()

var assets []* Unit
for results.HasNext() {
queryResult, err := results.Next()

if err != nil {

Page 33 of 95



Chapter 4. Implementation

return nil, err

}

var unit Unitlnner
err = json.Unmarshal (queryResult.Value, &unit)
if err != nil {

return nil, err

unit.ID = strings.TrimPrefix (unit.ID, string(UnitDoc)+”_.")

assets = append(assets , FromUnitInner(&unit))

return assets , nil

4.2.7 Delete Unit

To delete a unit the method in Listing 4.13 is used. It receives from the parameter the
id of the unit to be deleted and returns an error if not possible to delete. To delete the

code checks if the client has the correct role to be able to do the action.

Listing 4.13: Delete Unit
func (s *SmartContract) DeleteUnit(ctx contractapi.TransactionContextInterface

if err := s.HasPermission(ctx, UnitsDelete); err != nil {

return err

err := ctx.GetStub (). DelState(s.GetUnitID (ctx, id))
if err != nil {

return fmt.Errorf(” failed .to_delete._.asset %s: %v”, id, err)

Page 34 of 95



Chapter 4. Implementation

return nil

4.3 Product

4.3.1 Structure

There is two structures representing products, Listing 4.14, Product and Productin-
ner, these two have different purposes, ProductInner represents the data stored in the
database with the aditional composing Doc type. There is a function to parse between

the Productinner and Product easier.

Listing 4.14: Product Structure

const (

ProductDoc DocType = ”product”

type Productlnner struct {

Doc
ID string ‘json:”id” ¢
Name string ‘json :” name” ¢
Description string ‘json:” description” *
UnitIDs [| string ‘json:” unit_ids”‘

}

type Product struct {
1D string ‘json:”id” ‘¢
Name string ‘json:” name” ¢
Description string ‘json:” description”
Units []* Unit ‘json:” units”*

Page 35 of 95



Chapter 4. Implementation

func (s #*SmartContract) FromProductInner(ctx contractapi.TransactionContextInt

units := make([]* Unit, 0, len(p.UnitIDs))

for _, unitID := range p.UnitIDs {
unit , err := s.GetUnit(ctx, unitID)
if err != nil {
continue

units = append(units, unit)

return &Product{
1D: p-1D,
Name: p - Name,
Description: p.Description ,

Units: units ,

4.3.2 Get Product ID

The GetProductID build a storage product id of the input from the user by adding the
product document type, Listing 4.15.
Listing 4.15: Get Product ID

func (s *SmartContract) GetProductID(_. contractapi.TransactionContextInterface

return string(ProductDoc) + 7.7 + id

Page 36 of 95



Chapter 4. Implementation

4.3.3 Product Exist

The method ProductEzist, Listing 4.16, checks if a product exists, it takes a single id

and checks if it exists in the current state.

Listing 4.16: Product Exist

func (s *SmartContract) ProductExist(ctx contractapi.TransactionContextInterfa
assetJSON, err := ctx.GetStub (). GetState(s.GetProductID (ctx, id))
if err != nil {

return false, fmt.Errorf(”failed _to.read_from_world_state: _%v”

return assetJSON != nil, nil

4.3.4 Create Product

To create a new product the user need to invoke the CreateProduct method with the id,
name, description, and units. These parameters are then pass through to the method in
Listing 4.17. It first if the current context user has the permissions for creating a product.
Then checks if a product with the same id already exists, if so returns an error saying it
already exists, otherwise continues to the next step. It also checks if the units ids coming
from the request are valid and exist. After that, the client id is retrieved from the context,
and the new product is built. Finally, the product is committed to the state, creating a

new product ready to be retrieved.

Listing 4.17: Create Product

func (s *SmartContract) CreateProduct(ctx contractapi.TransactionContextInterf
if err := s.HasPermission(ctx, ProductsCreate); err != nil {

return err

exists , err := s.ProductExist(ctx, id)

Page 37 of 95



Chapter 4. Implementation

if err != nil {
return err

}

if exists {

return fmt.Errorf(”the_asset %s_already._exists”, id)

if err := s.UnitsExists(ctx, units); err != nil {

return err

clientID , err := s.GetSubmittingClientldentity (ctx)
if err != nil {

return err

doc := Doc{
Type: ProductDoc,
CreatedBy: clientID ,
UpdatedBy: clientID ,

unit := ProductInner{
ID: s.GetProductID (ctx, id),
Name: name,

Description: description ,
UnitIDs: units ,

Doc: doc,

Page 38 of 95



Chapter 4. Implementation

assetBytes, err := json.Marshal(unit)
if err != nil {

return err

err = ctx.GetStub (). PutState(unit.ID, assetBytes)
if err != nil {

return err

return nil

4.3.5 Get Product

The GetProduct, Listing 4.18 receives a product id from the parameters and returns a
product or an error. It checks to see if the client requesting the operation has the correct
attribute role and gets the product from the state. Before sending the product back to the
client it removes the storage id that adds the document type. The Listing 4.18 represent

the same method but instead of returning the type Product, returns ProductInner.

Listing 4.18: Create Product

func (s *SmartContract) GetProductInner(ctx contractapi.TransactionContextInte

if err := s.HasPermission(ctx, ProductsRead); err != nil {

return nil, err

assetBytes , err := ctx.GetStub (). GetState(s.GetProductID (ctx,
if err != nil {
return nil, fmt.Errorf(” failed .to_get_asset %s: %v”, id,

Page 39 of 95



Chapter 4. Implementation

func (s

if assetBytes =— nil {

return nil, fmt.Errorf(” asset %s._does.not_exist”, id)

var product Productlnner
err = json.Unmarshal(assetBytes, &product)
if err != nil {

return nil, err

product .ID = strings.TrimPrefix (product.ID, string(ProductDoc)+”_")

return &product, nil

xSmartContract) GetProduct(ctx contractapi.TransactionContextInterface
if err := s.HasPermission(ctx, ProductsRead); err != nil {

return nil, err

assetBytes , err := ctx.GetStub (). GetState(s.GetProductID (ctx, id))
if err != nil {
return nil, fmt.Errorf(” failed .to_get_asset %s: %v”, id, err)

if assetBytes = nil {

return nil, fmt.Errorf(”asset _%s._does_.not_exist”, id)

var product Productlnner

err = json.Unmarshal(assetBytes, &product)

Page 40 of 95



Chapter 4. Implementation

if err != nil {

return nil, err

product .ID = strings.TrimPrefix (product.ID, string(ProductDoc)+”_")

return s.FromProductlnner (ctx, &product), nil

4.3.6 List Products

The method in Listing 4.19, ListProducts, lists all the products currently saved in the
state. It first checks for permissions, if the correct role match, then returns the products

to the client.

Listing 4.19: List Products

func (s #*SmartContract) ListProducts(ctx contractapi.TransactionContextInterfa

if err := s.HasPermission(ctx, ProductsRead); err != nil {

return nil, err

results , err := ctx.GetStub (). GetQueryResult (fmt. Sprintf( ‘{”selector”:
if err != nil {
return nil, fmt.Errorf(” failed_to_get_assets: %v”, err)

}

defer results. Close()

var assets []*Product

for results.HasNext() {
queryResult , err := results.Next()
if err != nil {

return nil, err

Page 41 of 95



Chapter 4. Implementation

var unit Productlnner
err = json.Unmarshal(queryResult.Value, &unit)
if err != nil {

return nil, err

unit.ID = strings.TrimPrefix (unit.ID, string(ProductDoc)+”_")

assets = append(assets, s.FromProductInner(ctx, &unit))

return assets, nil

4.3.7 Delete Product

To delete a product the method in Listing 4.20 is used. It receives from the parameter
the id of the product to be deleted and returns an error if not possible to delete. To delete

the code checks if the client has the correct role to be able to do the action.

Listing 4.20: Delete Product

func (s *SmartContract) ListProducts(ctx contractapi.TransactionContextInterfa
if err := s.HasPermission(ctx, ProductsRead); err != nil {

return nil, err

results , err := ctx.GetStub (). GetQueryResult (fmt. Sprintf( ‘{”selector”:
if err != nil {
return nil, fmt.Errorf(” failed _to_get_assets: %v”, err)

}

defer results. Close ()

var assets []*Product

Page 42 of 95



Chapter 4. Implementation

for results.HasNext() {
queryResult , err := results.Next()
if err != nil {
return nil, err
}
var unit Productlnner
err = json.Unmarshal(queryResult.Value, &unit)
if err != nil {

return nil, err

unit.ID = strings.TrimPrefix (unit.ID, string(ProductDoc)+”_")

assets = append(assets, s.FromProductlnner(ctx, &unit))

return assets , nil

4.4 Organization

4.4.1 Structure

There is two structures representing organizations, Organization and Organization-
Inner, Listing 4.21, these two have different purposes, OrganizationInner represents the
data stored in the database with the aditional composing Doc type. There is a function

to parse between the OrganizationInner and Organization easier.

Listing 4.21: Organization Structure

const (

OrganizationDoc DocType = ”organization”

Page 43 of 95



Chapter 4. Implementation

type OrganizationInner struct {

Doc
1D string ‘json:”id” ¢
Name string ‘json:”name” ‘

Description string ‘json:” description”®

b 4

Address string ‘json:” address”

3

PhoneNumber string ‘json:” phone_number”

type Organization struct {

1D string ‘json:”id” ¢

Name string ‘json:”name” ‘

4

Description string ‘json:” description”

¢

Address string ‘json:” address”

3

PhoneNumber string ‘json:” phone_number”

func (s *SmartContract) FromOrganizationInner(_ contractapi.TransactionContex:
return &Organization {
ID: p.1D,
Name: p . Name,
Description: p.Description ,
Address: p.Address,

PhoneNumber: p.PhoneNumber,

Page 44 of 95



Chapter 4. Implementation

4.4.2 Get Organization ID

The GetOrganizationlD, Listing 4.22, build a storage organization id of the input from

the user by adding the organization document type.

Listing 4.22: Get Organization ID

func (s *SmartContract) GetOrganizationID (- contractapi.TransactionContextInte

return string(OrganizationDoc) + 7.7 + id

4.4.3 Organization Exist

The method OrganizationFxist, Listing 4.23 checks if an organization exists, it takes

a single id and checks if it exists in the current state.

Listing 4.23: Organization Exist

func (s *SmartContract) GetOrganizationID (. contractapi.TransactionContextInte

return string(OrganizationDoc) + 7_.”7 + id

4.4.4 Create Organization

To create a new organization, the user needs to invoke the CreateOrganization method
with the id, name, description, address, and phone number in string. These parameters
are then pass through to the method in Listing 4.24. It first if the current context user
has the permissions for creating an organization. Then checks if an organization with the
same id already exists, if so returns an error saying it already exists, otherwise continues
to the next step. After that, the client id is retrieved from the context, and the new
organization is built. Finally, the organization is committed to the state, creating a new

organization ready to be retrieved.

Listing 4.24: Create Organization

func (s *SmartContract) CreateOrganization(ctx contractapi.TransactionContext]

if err := s.HasPermission(ctx, OrganizationsCreate); err != nil {

Page 45 of 95



Chapter 4. Implementation

return err

exists , err := s.OrganizationExist (ctx, id)
if err != nil {
return err

}

if exists {

return fmt. Errorf(”the_asset %s_already_exists”, id)
}
clientID , err := s.GetSubmittingClientldentity (ctx)
if err != nil {

return err

doc := Doc{
Type: OrganizationDoc ,
CreatedBy: clientID ,

UpdatedBy: clientID ,

unit := OrganizationInner{
ID: s.GetOrganizationID (ctx, id),
Name: name,

Description: description ,
Address: address ,
PhoneNumber: phoneNumber

Doc: doc,

Page 46 of 95



Chapter 4. Implementation

assetBytes, err := json.Marshal(unit)
if err != nil {

return err

err = ctx.GetStub ().PutState (unit.ID, assetBytes)
if err != nil {

return err

return nil

4.4.5 Update Organization

To update an organization, the user needs to invoke the UpdateOrganization method
with the id, name, description, address, and phone number in string. These parameters are
then pass through to the method in Listing 4.25. It first if the current context user has the
permissions for updating its organization or if it’s an admin with the create organization
role. Then checks if an organization with the same id already exists, if it does not exist
returns an error saying it does not exist, otherwise continues to the next step. After that,
the client id is retrieved from the context, and the new organization is built. Finally, the

updated organization is committed to the state.

Listing 4.25: Update Organization

func (s *SmartContract) UpdateOrganization (

ctx contractapi.TransactionContextInterface ,

id string, name string, description string, address string, phoneNumbe
) error {

if err := s.HasPermission(ctx, OrganizationsCreate); err != nil {

if innerErr := s.HasPermission(ctx, OrganizationsUpdate); inne

Page 47 of 95



Chapter 4. Implementation

return innerErr

if orgID, innerErr := s.GetSubmittingClientOrganization (ctx);

return err

exists , err := s.OrganizationExist (ctx, id)
if err != nil {
return err

}

if lexists {

return fmt.Errorf(”the_asset %s._does_not_exists”, id)
}
clientID ; err := s.GetSubmittingClientIdentity (ctx)
if err != nil {

return err

org, err := s.GetOrganizationInner (ctx, id)
if err != nil {

return err

org .Name = name
org.Description = description
org.Address = address

org . PhoneNumber = phoneNumber

Page 48 of 95



Chapter 4. Implementation

org . UpdatedBy = clientID

assetBytes, err := json.Marshal(org)
if err != nil {

return err

err = ctx.GetStub ().PutState(org.ID, assetBytes)
if err != nil {

return err

return nil

4.4.6 Get Organization

The GetOrganization, Listing 4.26 receives a product id from the parameters and
returns an organization or an error. It checks to see if the client requesting the operation
has the correct attribute role and gets the organization from the state. Before sending the
organization back to the client, it removes the storage id that adds the document type. The
Listing 4.26 represent the same method but instead of returning the type Organization,

returns OrganizationInner.

Listing 4.26: Get Organization and Get Organization Inner

func (s *SmartContract) GetOrganizationlnner(ctx contractapi.TransactionConte:

if err := s.HasPermission(ctx, OrganizationsRead); err != nil {

return nil, err

assetBytes , err := ctx.GetStub (). GetState(s.GetOrganizationID (ctx, id)

if err != nil {

Page 49 of 95



Chapter 4. Implementation

func (s

return nil, fmt.Errorf(” failed _to_get_asset %s: %v”, id, err)
}
if assetBytes =— nil {

return nil, fmt.Errorf(” asset %s._does.not_exist”, id)

var product Organizationlnner
err = json.Unmarshal(assetBytes, &product)
if err != nil {

return nil, err

product.ID = strings.TrimPrefix (product.ID, string(OrganizationDoc)+”_

return &product, nil

xSmartContract) GetOrganization(ctx contractapi.TransactionContextInte
if err := s.HasPermission(ctx, OrganizationsRead); err != nil {

return nil, err

assetBytes, err := ctx.GetStub (). GetState(s.GetOrganizationID (ctx, id)
if err != nil {
return nil, fmt.Errorf(” failed .to_get_asset %s: %v”, id, err)

if assetBytes =— nil {

return nil, fmt.Errorf(”asset _%s._does_.not_exist”, id)

Page 50 of 95



Chapter 4. Implementation

var product Organizationlnner
err = json.Unmarshal(assetBytes, &product)
if err != nil {

return nil, err

product.ID = strings.TrimPrefix (product.ID, string(OrganizationDoc)+”_

return s.FromOrganizationlnner (ctx, &product), nil

4.4.7 List Organizations

The method in Listing 4.27, ListOrganizations, lists all the organizations currently
saved in the state. It first checks for permissions, if the correct role match, then returns

the organizations to the client.

Listing 4.27: List Organizations

func (s *SmartContract) ListOrganizations(ctx contractapi.TransactionContextlI
if err := s.HasPermission(ctx, OrganizationsRead); err != nil {

return nil, err

results , err := ctx.GetStub (). GetQueryResult (fmt. Sprintf( ‘{”selector”:
if err != nil {
return nil, fmt.Errorf(” failed_to_get_assets: %v”, err)

}

defer results.Close()

var assets []*Organization
for results.HasNext() {

queryResult, err := results.Next()

Page 51 of 95



Chapter 4. Implementation

if err != nil {
return nil, err
}
var unit Organizationlnner
err = json.Unmarshal(queryResult.Value, &unit)
if err != nil {

return nil, err

unit .ID = strings . TrimPrefix (unit.ID, string(OrganizationDoc)+

assets = append(assets, s.FromOrganizationInner(ctx, &unit))

return assets, nil

4.4.8 Delete Organization

To delete an organization the method in Listing 4.28 is used. It receives from the
parameter the organization’s id to be deleted and returns an error if not possible to delete.

To delete the code checks if the client has the correct role to be able to do the action.

Listing 4.28: Delete Organization

func (s *SmartContract) DeleteOrganization(ctx contractapi.TransactionContext]
if err := s.HasPermission(ctx, OrganizationsDelete); err != nil {

return err

err := ctx.GetStub (). DelState(s.GetOrganizationID (ctx, id))
if err != nil {
return fmt.Errorf(” failed to_.delete_asset %s: %v”, id, err)

Page 52 of 95



Chapter 4. Implementation

return nil

4.5 Order

4.5.1 Structure

There is two structures representing orders, Listing 4.29, Order and OrderInner, these
two have different purposes, OrderInner represents the data stored in the database with

the aditional composing Doc type. The function in Listing 4.30 is used to parse between

the OrderInner and Order easier.

const (

Listing 4.29: Order Structures

OrderDoc DocType = ”order”

type OrderInner struct {

Doc

1D

Amount

Price

Type

Status
OrganizationlD
ProductID
UnitID

type Order struct {

string ‘json:
uint32 ‘json
Price ‘json:

OrderType ‘json

OrderStatus ‘json:

string ‘json:
string ‘json:
string ‘json:

9

2

:77 typeﬂ

9

id?? ¢

:” amount” ¢

price” ¢

4

¢

status”
organization_id” *
product_id” ¢

unit_id” ¢

Page 53 of 95



Chapter 4. Implementation

1D string ‘json:”id” ¢

Amount uint32 ‘json :” amount”

Price Price ‘json:” price” ¢

Type OrderType ‘json:” type” ¢

Status OrderStatus ‘json:” status” ¢
Organization x*Organization ‘json:” organization” ‘
Product xProduct ‘json:” product”

Unit *Unit “json:” unit” ¢

Listing 4.30: Order Mapper

func (s *SmartContract) FromOrderInner(ctx contractapi.TransactionContextInter

org, - := s.GetOrganization(ctx, p.OrganizationID)
product, - := s.GetProduct(ctx, p.ProductID)
unit, _ := s.GetUnit(ctx, p.UnitID)

return &Order{

ID: p-ID,

Amount : p.Amount,

Price: Price{
Amount: p-Price.Amount,
Exponent : p.Price.Exponent
Currency : p.Price.Currency,

}

Type: p.Type,
Status: p.Status,
Organization: org ,
Product: product ,
Unit: unit ,

Page 54 of 95



Chapter 4. Implementation

4.5.2 Order Type

Listing 4.31 shows the two order types present in the system, BUY and SELL, for
now, the system will now use sell orders but, the type will be present anyway. The same

figure also shows the mapper to map from a string to the type OrderType.

Listing 4.31: Order Type

const (
OrderTypeBuy OrderType = ”"BUY”
OrderTypeSell OrderType = ”SELL”

type OrderType string

func (o OrderType) String() string {

return string (o)

func ParseOrderType(_type string) (OrderType, error) {
switch _type {
case "BUY”:
return OrderTypeBuy, nil
case "SELL”:
return OrderTypeSell, nil

}

return "7

, fmt.Errorf(”invalid_order._type”)

4.5.3 Order Status

Listing 4.32 shows the two order status present in the system, OPEN and CLOSED.

The same figure also shows the mapper to map from a string to the type OrderStatus.

Page 55 of 95



Chapter 4. Implementation

Listing 4.32: Order Status

const (
OrderStatusOpen OrderStatus = "OPEN”
OrderStatusClosed OrderStatus = ”"CLOSED”

type OrderStatus string

func (o OrderStatus) String() string {

return string (o)

func ParseOrderStatus(status string) (OrderType, error) {
switch status {
case "OPEN” :
return OrderStatusOpen, nil
case "CLOSED” :
return OrderStatusClosed , nil

}

return

by

, fmt.Errorf(”invalid_order._status”)

4.5.4 Get Order

The GetOrderID, Listing 4.33, build a storage order id of the input from the user by
adding the order document type.
Listing 4.33: Build Order 1D

func (s *SmartContract) GetOrderID(ctx contractapi.TransactionContextInterface

return string (OrderDoc) + 7.7 + id

Page 56 of 95



Chapter 4. Implementation

4.5.5 Order Exist

Both methods OrderFExist and OrdersExist, Listing 4.34, checks if orders exist, the first
one takes a single id, the second one receives a list of ids and checks if they exist in the

current state.

Listing 4.34: Order Exists

func (s *SmartContract) OrderExist(ctx contractapi.TransactionContextInterface
assetJSON, err := ctx.GetStub (). GetState(s.GetOrderID (ctx, id))
if err != nil {

return false, fmt.Errorf(” failed _.to_.read_from_world_state: %v”, err)

return assetJSON != nil, nil

func (s *SmartContract) OrdersExist(ctx contractapi.TransactionContextInterfac

for_, id := range ids {
e, err := s.OrderExist(ctx, id)
if err != nil {

return err

}
if le {

return fmt. Errorf(”order %s._does.not_exist”, id)

return nil

Page 57 of 95



Chapter 4. Implementation

4.5.6 Create Order

To create a new order the user need to invoke the CreateOrder method with the id,
amount, price, price exponent, currency, type, organization id, product id, and unit id.
These parameters are then pass through to the method in Listing 4.35. It first if the current
context user has the permissions for creating an order. Then checks if the organization,
product, and unit exist and if an order with the same id already exists, if so returns an
error saying it already exists, otherwise continues to the next step. After that, the client
id is retrieved from the context, and the new order is built. Finally, the order is committed

to the state, creating a new order ready to be retrieved.

Listing 4.35: Create Order

func (s *SmartContract) CreateOrder (
ctx contractapi.TransactionContextInterface

id string, amount uint32, price uint32, priceExponent uint32,

currency

typelnput string, organizationlID string, productID string, unitlD stri:

) error {
if err := s.HasPermission(ctx, OrdersCreate); err != nil {

return err

orglD, err := s.GetSubmittingClientOrganization (ctx)
if err != nil || orglD != organizationlD {

return fmt. Errorf(” unauthorized”)

exists , err := s.OrderExist(ctx, id)
if err != nil {
return err
}
if exists {

return fmt. Errorf(”the_asset %s_already._exists”, id)

Page 58 of 95



Chapter 4. Implementation

hasOrg, err := s.OrganizationExist(ctx, organizationlID)
if err != nil {
return err

}
if 'hasOrg {

return fmt.Errorf(”organization %s._does_not_exists”, id)
}
hasProduct, err := s.ProductExist(ctx, productID)
if err != nil {

return err

}

if !'hasProduct {

return fmt.Errorf(”product %s._does_.not_exists”, id)
}
hasUnit, err := s.UnitExist(ctx, unitID)
if err != nil {

return err

}
if 'hasUnit {

return fmt. Errorf(” unit_%s._does_not_exists”, id)
}
clientID , err := s.GetSubmittingClientIdentity (ctx)
if err != nil {

return err

Page 59 of 95



Chapter 4. Implementation

_type, err := ParseOrderType(typelnput)
if err != nil {

return err

doc := Doc{
Type: OrderDoc,
CreatedBy: clientID ,
UpdatedBy: clientID ,

unit := OrderInner{
Doc: doc,
ID: s.GetOrderID (ctx, id),
Amount: amount ,
Price: Price{Amount: price, Exponent:
Type: -type,
Status: OrderStatusOpen

OrganizationID: organizationlD |,

ProductID: productID ,
UnitID: unitID |
}
assetBytes , err := json.Marshal(unit)
if err != nil {

return err

err = ctx.GetStub (). PutState(unit.ID, assetBytes)

priceExponent ,

Page 60 of 95



Chapter 4. Implementation

if err != nil {

return err

return nil

4.5.7 Close Order

To close an order, the user needs to invoke the CloseOrder method with the id. These
parameters are then pass through to the method in Listing 4.36. It first if the current
context user has the permissions for closing an order. Then checks if the order with
the same id already exists, if it does not exist returns an error saying it does not exist,
otherwise continues to the next step. It also checks if the order is already closed and
returns an error if so. After that, the client id is retrieved from the context, and the new

order is built. Finally, the updated order is committed to the state.

Listing 4.36: Close Order
func (s *SmartContract) CloseOrder(ctx contractapi.TransactionContextInterface
if err := s.HasPermission(ctx, OrdersUpdate); err != nil {

return err

exists , err := s.OrderExist(ctx, id)
if err != nil {
return err
}
if exists {

return fmt. Errorf(”the_asset %s_already._exists”, id)

order, err := s.GetOrderInner(ctx, id)

Page 61 of 95



Chapter 4. Implementation

if err != nil {

return err

orglD, err := s.GetSubmittingClientOrganization (ctx)
if err != nil || orglD != order.OrganizationID {

return fmt.Errorf(”unauthorized”)

if order.Status = OrderStatusClosed {

return fmt.Errorf(”you_.do_not_belong._in_that_org”)

order.Status = OrderStatusClosed

assetBytes, err := json.Marshal(order)
if err != nil {

return err

err = ctx.GetStub (). PutState(order.ID, assetBytes)

return nil

4.5.8 Get Order

The GetOrder, Listing 4.37 receives a order id from the parameters and returns a order
or an error. It checks to see if the client requesting the operation has the correct attribute
role and gets the order from the state. Before sending the data back to the client, it

removes the storage id that adds the document type. The Listing 4.38 represent the same

Page 62 of 95



Chapter 4. Implementation

method but instead of returning the type Order, returns OrderInner.

func (s

func (s

Listing 4.37: Get Order

xSmartContract) GetOrder(ctx contractapi.TransactionContextInterface ,
if err := s.HasPermission(ctx, OrdersRead); err != nil {

return nil, err

assetBytes, err := ctx.GetStub (). GetState(s.GetOrderID (ctx, id))
if err != nil {
return nil, fmt.Errorf(” failed .to_get_asset %s: %v”, id, err)

if assetBytes =— nil {

return nil, fmt.Errorf(” asset %s._does_not_exist”, id)

var unit Orderlnner
err = json.Unmarshal(assetBytes, &unit)
if err != nil {

return nil, err

unit.ID = strings.TrimPrefix (unit.ID, string(OrderDoc)+”_")

return s.FromOrderInner(ctx, &unit), nil

Listing 4.38: Get Order Inner

xSmartContract) GetOrderInner(ctx contractapi.TransactionContextInterf
if err := s.HasPermission(ctx, OrdersRead); err != nil {

return nil, err

Page 63 of 95



Chapter 4. Implementation

assetBytes , err := ctx.GetStub (). GetState(s.GetOrderID (ctx, id))
if err != nil {
return nil, fmt.Errorf(” failed _to_get_asset %s: %v”, id, err)

if assetBytes =— nil {

return nil, fmt.Errorf(” asset %s._does.not_exist”, id)

var unit OrderInner
err = json.Unmarshal(assetBytes, &unit)
if err != nil {

return nil, err

unit.ID = strings.TrimPrefix (unit.ID, string(OrderDoc)+"_")

return &unit, nil

4.5.9 List Orders

The method in Listing 4.39, ListOrders, lists all the orders currently saved in the
state. It first checks for permissions, then returns the orders to the client. There are
three variants of this method, the first one, ListOrdersByStatus filters orders by stats,
Listing 4.39. The second, ListOrdersByOrg, filters orders by organizations, Listing 4.39.
Finally, the third variant combines the two previous by filtering by organization and status,

ListOrdersByOrgAndStatus, Listing 4.39. The methods all return the same type of data.

Listing 4.39: List Orders

func (s *SmartContract) ListOrders(ctx contractapi.TransactionContextInterface

if err := s.HasPermission(ctx, OrdersRead); err != nil {

Page 64 of 95



Chapter 4. Implementation

return nil, err

results , err := ctx.GetStub (). GetQueryResult (fmt. Sprintf( ‘{”selector”:
if err != nil {
return nil, fmt.Errorf(” failed_to_get_assets: %v”, err)

}

defer results. Close ()

var assets []*Order
for results.HasNext() {
queryResult, err := results.Next()
if err != nil {
return nil, err
}
var unit OrderInner
err = json.Unmarshal(queryResult.Value, &unit)
if err != nil {

return nil, err

unit.ID = strings.TrimPrefix (unit.ID, string(OrderDoc)+”_")

assets = append(assets , s.FromOrderInner(ctx, &unit))

return assets, nil

func (s *SmartContract) ListOrdersByStatus(ctx contractapi.TransactionContext]

if err := s.HasPermission(ctx, OrdersRead); err != nil {

Page 65 of 95



Chapter 4. Implementation

return nil, err

status , err := ParseOrderStatus(statusInput)
if err != nil {

return nil, err

results , err := ctx.GetStub (). GetQueryResult (fmt. Sprintf( ‘{”selector”:
if err != nil {
return nil, fmt.Errorf(” failed _to_get_assets: %v”, err)

}

defer results.Close ()

var assets []*Order
for results.HasNext() {
queryResult , err := results.Next()
if err != nil {
return nil, err
}
var unit Orderlnner
err = json.Unmarshal(queryResult.Value, &unit)
if err != nil {

return nil, err

unit.ID = strings.TrimPrefix (unit.ID, string(OrderDoc)+”_")

assets = append(assets , s.FromOrderInner(ctx, &unit))

Page 66 of 95



Chapter 4. Implementation

return assets, nil

func (s *SmartContract) ListOrdersByOrg(ctx contractapi.TransactionContextInte
if err := s.HasPermission(ctx, OrdersRead); err != nil {

return nil, err

results , err := ctx.GetStub (). GetQueryResult (fmt. Sprintf( ‘{”selector”:
if err != nil {
return nil, fmt.Errorf(” failed _to_get_assets: %v”, err)

}

defer results.Close ()

var assets []*Order
for results.HasNext() {
queryResult , err := results.Next()
if err != nil {
return nil, err
}
var unit Orderlnner
err = json.Unmarshal(queryResult.Value, &unit)
if err != nil {

return nil, err

unit.ID = strings.TrimPrefix (unit.ID, string(OrderDoc)+”_")

assets = append(assets , s.FromOrderInner(ctx, &unit))

Page 67 of 95



Chapter 4. Implementation

return assets, nil

func (s *SmartContract) ListOrdersByOrgAndStatus(ctx contractapi.TransactionCe
if err := s.HasPermission(ctx, OrdersRead); err != nil {

return nil, err

status , err := ParseOrderStatus(statusInput)
if err != nil {

return nil, err

results , err := ctx.GetStub (). GetQueryResult (fmt. Sprintf( ‘{”selector”:
if err != nil {
return nil, fmt.Errorf(” failed _to_get_assets: %v”, err)

}

defer results. Close()

var assets []*Order
for results.HasNext() {
queryResult , err := results.Next()
if err != nil {
return nil, err
}
var unit OrderInner
err = json.Unmarshal(queryResult.Value, &unit)
if err != nil {

return nil, err

Page 68 of 95



Chapter 4. Implementation

unit.ID = strings.TrimPrefix (unit.ID, string(OrderDoc)+”_")

assets = append(assets, s.FromOrderInner(ctx, &unit))

return assets, mnil

4.6 Transaction

4.6.1 Structure

There is two structures representing transactions, Transaction and TransactionInner,
these two have different purposes, TransactionInner represents the data stored in the
database with the aditional composing Doc type, the other is the output structure. The
function in Listing 4.40 is used to parse between the TransactionInner and Transaction

easier.

Listing 4.40: Transaction Structure

const (

TransactionDoc DocType = ”transaction”

type TransactionInner struct {

Doc

ID string “json:”id” ¢

Amount uint32 ‘json:” amount” ¢
Description string ‘json:” description” *
Status TransactionStatus ‘json:” status”®
OrganizationID string ‘json:” organization_id” ¢
OrderID string ‘json:” order_id” ¢

Page 69 of 95



Chapter 4. Implementation

type Transaction struct {

1D string ‘json:”id” ¢

Amount uint32 ‘json :” amount”
Description string ‘json:” description” ¢
Status TransactionStatus ‘json:” status”®
OrganizationID string ‘json:” organization_id” °

OrderID string

‘json:” order_id” ¢

func (s *SmartContract) FromTransactionlnner (. contractapi.TransactionContext]

return &Transaction{
ID:
Amount :
Description:

Status:

OrganizationlD :

OrderID:

4.6.2 Transaction Status

koRc R o B o B o B o]

D

)

. Amount ,
.Description ,
.Status ,
.OrganizationID ,

.OrderID

Listing 4.41 shows the ten transaction status present in the system, OPEN, CLOSED,

CANCELED, IN.REVIEW, WAITING_PAYMENT, PAID, READY, IN.PROGRESS,

NOT_DELIVERED, and DELIVERED. The Listing 4.41 shows the mapper to map from

a string to the type TransactionStatus.

Listing 4.41: Transaction Status

const (

TransactionStatusOpen

TransactionStatus = "OPEN”

Page 70 of 95



Chapter 4. Implementation

TransactionStatusClosed TransactionStatus = ”"CLOSED”
TransactionStatusCanceled TransactionStatus = "CANCELED”
TransactionStatusInReview TransactionStatus = "IN.REVIEW”

TransactionStatusWaitingPayment TransactionStatus = "WAITING PAYMENT”

TransactionStatusPaid TransactionStatus = ”"PAID”
TransactionStatusReady TransactionStatus = "READY”
TransactionStatusInProgress TransactionStatus = "IN PROGRESS”

TransactionStatusNotDelivered TransactionStatus = "NOTDELIVERED”

TransactionStatusDelivered TransactionStatus = "DELIVERED”

type TransactionStatus string

func (o TransactionStatus) String() string {

return string (o)

func ParseTransactionStatus(status string) (TransactionStatus, error) {
switch status {
case "OPEN":
return TransactionStatusOpen , nil
case ”"CLOSED” :
return TransactionStatusClosed , nil
case "CANCELED” :
return TransactionStatusCanceled , nil
case "WAITING PAYMENT” :
return TransactionStatusWaitingPayment , nil
case "PAID”:
return TransactionStatusPaid , nil

case "IN_REVIEW” :

Page 71 of 95



Chapter 4. Implementation

return TransactionStatusInReview , nil
case "READY” :

return TransactionStatusReady , nil
case ”"IN_PROGRESS” :

return TransactionStatusInProgress, nil
case "NOTDELIVERED” :

return TransactionStatusNotDelivered , nil
case "DELIVERED” :

return TransactionStatusDelivered , nil

}

return 7”7

, fmt.Errorf(”invalid._transaction_type”)

4.6.3 Get Transaction ID

The GetTransactionID, Listing 4.42, build a storage order id of the input from the

user by adding the transaction document type.

Listing 4.42: Get Transaction ID

func (s *SmartContract) GetTransactionID (- contractapi.TransactionContextInter

return string(TransactionDoc) + 7.7 + id

4.6.4 Transaction Exist

The method TransactionExist, Lsiting 4.43 checks if a transaction exists, it takes a

single id and checks if it exists in the current state.

Listing 4.43: Transaction Exist

func (s *SmartContract) TransactionExist(ctx contractapi.TransactionContextInt
assetJSON |, err := ctx.GetStub (). GetState(s.GetTransactionID (ctx, id))
if err != nil {

return false, fmt.Errorf(” failed _to.read_from._world_state: _%v”

Page 72 of 95



Chapter 4. Implementation

return assetJSON != nil, nil

4.6.5 Make Transaction

To create a new transaction, the user needs to invoke the MakeTransaction method
with the id, amount, organization id, and the order id. These parameters are then pass
through to the method in Listing 4.44. It first if the current context user has the per-
missions for creating transactions. Then checks if the organization and order exist and
if a transaction with the same id already exists, if so returns an error saying it already
exists, otherwise continues to the next step. It also gets all transactions for the order and
checks if the amount of product in all the transactions exceeds the amount in the order,
if so returns an error. After that, the client id is retrieved from the context, and the new
order is built. Finally, the order is committed to the state, creating a new order ready to

be retrieved.

Listing 4.44: Make Transaction

func (s *SmartContract) MakeTransaction (

ctx contractapi.TransactionContextInterface ,

id string, amount uint32, organizationID string, orderID string,
) error {

if err := s.HasPermission(ctx, TransactionsCreate); err != nil {

return err

exists , err := s.TransactionExist(ctx, id)
if err != nil {
return err

}

if exists {

Page 73 of 95



Chapter 4. Implementation

return fmt. Errorf(”the_asset %s_already._exists”, id)
}
hasOrg, err := s.OrganizationExist (ctx, organizationlID)
if err != nil {

return err

}
if hasOrg {

return fmt. Errorf(”organization _%s_does_.not_exist”, id)
}
order, err := s.GetOrder(ctx, orderID)
if err != nil {

return err

transactions , err := s.ListTransactionsForOrderInner (ctx, orderID)
if err != nil {

return err

transactionsAmount := getTransactionsAmount (transactions)
if transactionsAmount+amount > order.Amount {

return fmt.Errorf(”invalid _amount_to_transact”)

clientID , err := s.GetSubmittingClientIdentity (ctx)
if err != nil {

return err

Page 74 of 95



Chapter 4. Implementation

doc := Doc{
Type: TransactionDoc ,
CreatedBy: clientID ,

UpdatedBy: clientID ,

transaction := TransactionInner{
Doc: doc,
ID: s.GetUnitID (ctx, id),
Amount: amount ,
Status: TransactionStatusOpen ,

OrganizationID: organizationlD |,

OrderID: orderID |
}
assetBytes , err := json.Marshal(transaction)
if err != nil {

return err

err = ctx.GetStub (). PutState (transaction.ID, assetBytes)
if err != nil {

return err

eventBody, err := NewNewTransactionEvent(transaction.ID)
if err != nil {

return err

Page 75 of 95



Chapter 4. Implementation

err = ctx.GetStub (). SetEvent(NewTransactionEventKey, eventBody)
if err != nil {

return err

return nil

4.6.6 Change Transaction Status

To change a transaction status, the user needs to invoke the ChangeStatus method
with the id, new status, and a message log. These parameters are then pass through to
the method in Listing 4.45. It first if the current context user has the permissions for
updating a transaction. Then checks if the transaction with the same id already exists, if
it does not exist returns an error saying it does not exist, otherwise continues to the next
step. It also checks if the transaction is already closed or canceled and returns an error
if so. After that, the client id is retrieved from the context, and the new transaction is

built, Listing 4.45. Finally, the updated transaction is committed to the state.

Listing 4.45: Change Transaction Status

func (s *SmartContract) ChangeStatus(ctx contractapi.TransactionContextInterfa
if err := s.HasPermission(ctx, TransactionsUpdate); err != nil {

return err

status , err := ParseTransactionStatus(inputStatus)
if err != nil {

return err

exists , err := s.TransactionExist(ctx, id)

Page 76 of 95



Chapter 4. Implementation

if err != nil {
return err

}

if exists {

return fmt.Errorf(”the_asset %s_already._exists”, id)
}
transaction , err := s.GetTransactionInner (ctx, id)
if err != nil {

return err

if transaction.Status = TransactionStatusClosed || transaction.Status

return fmt.Errorf(” transaction._already._closed._or_canceled”)

order, err := s.GetOrderInner(ctx, transaction.OrderID)
if err != nil {

return err

orgID, err := s.GetSubmittingClientOrganization (ctx)
if err != nil {

return err

switch orgID {
case transaction.OrganizationID:
if status = TransactionStatusPaid ||

status = TransactionStatusInReview ||

Page 77 of 95



Chapter 4. Implementation

status = TransactionStatusWaitingPayment ||

status

TransactionStatusReady ||

status = TransactionStatusInProgress {

return fmt.Errorf(”you_.do_not_have_permissions_to_do_t

}

case order.OrganizationlID:

default:

return fmt.Errorf(”you.do_not_have_.permissions_to_do_that”)

clientID ; err := s.GetSubmittingClientIdentity (ctx)

if err != nil {

return err

oldStatus := transaction.Status

transaction.Status = status

transaction.Description = message

transaction .UpdatedBy = clientID

assetBytes , err :=

if err != nil {

return err

json.Marshal (transaction)

err = ctx.GetStub (). PutState(transaction.ID, assetBytes)

if err != nil {

return err

Page 78 of 95



Chapter 4. Implementation

eventBody, err := NewTransactionStatusChangedEvent(transaction.ID, old
if err != nil {

return err

err = ctx.GetStub (). SetEvent(TransactionStatusChangedEventKey , eventBo
if err != nil {

return err

return nil

4.6.7 Get Transaction

The GetTransaction, Listing 4.46 receives a transaction id from the parameters and
returns a transaction or an error. It checks to see if the client requesting the operation
has the correct attribute role and gets the transaction from the state. Before sending
the data back to the client, it removes the storage id that adds the document type. The
Listing 4.46 represent the same method but instead of returning the type Transaction,

returns a TransactionInner structure.

Listing 4.46: Get Transaction and Get Transaction Inner

func (s *SmartContract) GetTransactionInner(ctx contractapi.TransactionContex:
if err := s.HasPermission(ctx, TransactionsRead); err != nil {

return nil, err

assetBytes , err := ctx.GetStub (). GetState(s.GetOrderID (ctx, id))
if err != nil {
return nil, fmt.Errorf(” failed _to_get_asset %s: %v”, id, err)

Page 79 of 95



Chapter 4. Implementation

func (s

if assetBytes =— nil {

return nil, fmt.Errorf(”asset _%s._does_.not_exist”, id)

var unit Transactionlnner
err = json.Unmarshal(assetBytes , &unit)
if err != nil {

return nil, err

unit.ID = strings.TrimPrefix (unit.ID, string(TransactionDoc)+”_")

return &unit, nil

xSmartContract) GetTransaction(ctx contractapi.TransactionContextInter
if err := s.HasPermission(ctx, TransactionsRead); err != nil {

return nil, err

assetBytes , err := ctx.GetStub (). GetState(s.GetOrderID (ctx, id))
if err != nil {
return nil, fmt.Errorf(” failed _to_get_asset %s: %v”, id, err)

if assetBytes — nil {

return nil, fmt.Errorf(” asset._%s_does.not_exist”, id)

var unit Transactionlnner

Page 80 of 95



Chapter 4. Implementation

err = json.Unmarshal(assetBytes, &unit)
if err != nil {

return nil, err

unit.ID = strings. TrimPrefix (unit.ID, string(TransactionDoc)+”_")

return s.FromTransactionlnner(ctx, &unit), nil

4.6.8 List Transactions

The method in Listing 4.47, ListTransactions, lists all the transactions currently saved
in the state. It first checks for permissions, then returns the transactions to the client.
There are one variant of this method, ListTransactionsInner that is same method but

instead of returning a list of Transaction, returns Transactionlnner, Listing 4.47.

Listing 4.47: List Transactions
func (s *SmartContract) ListTransactionsForOrderInner(ctx contractapi.Transact
if err := s.HasPermission(ctx, TransactionsRead); err != nil {

return nil, err

results , err := ctx.GetStub (). GetQueryResult (fmt. Sprintf( ‘{”selector”:
if err != nil {
return nil, fmt.Errorf(” failed _to_get_assets: %v”, err)

}

defer results.Close ()

var assets []* Transactionlnner
for results.HasNext() {
queryResult, err := results.Next()

if err != nil {

Page 81 of 95



Chapter 4. Implementation

func (s

return nil, err
}
var unit TransactionInner
err = json.Unmarshal (queryResult.Value, &unit)
if err != nil {

return nil, err

unit .ID = strings . TrimPrefix (unit.ID, string(TransactionDoc)+”

assets = append(assets , &unit)

return assets , nil

xSmartContract) ListTransactionsForOrder(ctx contractapi.TransactionCe
if err := s.HasPermission(ctx, TransactionsRead); err != nil {

return nil, err

results , err := ctx.GetStub (). GetQueryResult (fmt. Sprintf( ‘{”selector”:
if err != nil {
return nil, fmt.Errorf(” failed _to_get_assets: %v”, err)

}

defer results.Close ()

var assets []* Transaction
for results.HasNext() {
queryResult, err := results.Next()

if err != nil {

Page 82 of 95



Chapter 4. Implementation

return nil, err
}
var unit TransactionInner
err = json.Unmarshal (queryResult.Value, &unit)
if err != nil {

return nil, err

unit .ID = strings . TrimPrefix (unit.ID, string(TransactionDoc)+”

assets = append(assets, s.FromTransactionInner(ctx, &unit))

return assets , nil

Page 83 of 95



Chapter 5

Results and Analysis

The proposed architecture has identified advantages when compared with traditional
systems. It has quicker transactions as there is no need to wait for email responses. The
system also allows faster entity integration into the network as it does not require going
through the process of building trust with every participant. The network facilitates the
role of the auditor, as it does not need to ask for the records of each entity, as it already
has direct access to everything recorded in the network.

There are also some identified upgrades to the system. Currently, users interact with
it by using a Command-Line Interface (CLI). This setup for the target audience can
be a problem and be hard to learn. In this case, a simple front-end app could help to
fix the situation. Transactions speed can improve by adding a built-in cryptocurrency,
removing the manual intervention on payments. This cryptocurrency would be a stable
representation of the local currency, for example, the euro.

This section gives four examples of how to interact with the network. The examples
are how a new organization joins the network, how to remove an organization from the

system, creating a new sell order, and finally, how to buy a product.

5.1 Creation a New Organization

The first thing for a new organization to be able to join the networks is its nodes,
a way to communicate with it, for that a peer node is required. Once the peer node is

created and configured, it’s time to set up the necessary admin user. The founder creates

Page 84 of 95



Chapter 5. Results and Analysis

a new certificate for the admin user and enrolls him into the system. The rest of the users
are created by this admin, this will require a CA to create certificates for each one of the

users he wants to give access to.

5.2 Removing an Organization

The process of removing an organization is simple as revoking the CA certificate au-
thority from accessing the network. After that is just required to cancel all the sell orders

which the organization has active.

5.3 Creating a new sell order

To create a sell order, the user needs to have the necessary role on his certificate. If the
user’s certificate has the correct permission, the CLI tool will perform the request using a

fabric peer.

Listing 5.1: List Products

peer chaincode query —C mychannel —n basic—1 —c ’{” Args”:[” ListProducts”]}’ |

7id” . 7 areia”

"name” : 7 Areia” ,
?description”: ” Areia”
Tunits”: |

{

b id?? . ” kg77 ,

"name” : 7" Kilogramas” ,
?description”: ”Kilogramas” ,
”exponent”: 2

Page 85 of 95



Chapter 5. Results and Analysis

First, the user uses the ListProducts query to select and check the product id and
unit id of the product he wants to put on in the sell order. Second, the invoking of the
CreateOrder using as arguments the order id, amount of the product, price of each unit,
price exponent, currency code, order type, organization id of the user, selected product

id, and unit id.

Listing 5.2: Create Order

peer chaincode invoke —o localhost:7050 —ordererTLSHostnameOverride orderer.e

2021—-11-30 00:32:34.997 UTC [chaincodeCmd]| chaincodeIlnvokeOrQuery —> INFO 001

The request then gets a response from the peer node with a success or failure message.
If successful, the order is correctly inserted into the ledger, otherwise, the problem is

presented to the user and he can fix the issue. Some failure messages examples are:

e "product id not found” - the product does not exist
e "unit id not found” - unit does not exist

e "the asset already exists” - already exists an order with that id

5.4 Buying a product

To buy a product, the user needs to have the necessary role on his certificate. If the
user’s certificate has the correct permission, the CLI tool will perform the request using a
fabric peer.

Listing 5.3: List Orders

peer chaincode query —C mychannel —n basic—1 —c¢ ’{"Args”:[” ListOrders”]}’ | jq

Page 86 of 95



Chapter 5. Results and Analysis

7id”: ”order—17,
”amount” : 2000,
"price”: {
7amount” : 1134,
”exponent”: 2,
”currency”: "EUR’
}s
"type”: 7"SELL” |
?status”: "OPEN” ,
"organization”: {
”id” . ”produtor—areia” ,
"name” : " Productor_de.Areia.#1”7 |
7description”: ”Produtor_.de_Areia_Teste” ,
”address”: ”Morada_Exemplo” ,
”phone_number” : 7222444666”
}s
"product”: {
7id”: 7 areia”
"name” : 7 Areia” |
7description”: ” Areia”
“units”: |

{

b2 id?? : ” kg77 ,

"name” : ” Kilogramas” ,
"description”: ”Kilogramas” ,
”exponent” : 2

Page 87 of 95



Chapter 5. Results and Analysis

b id?? . ” kg77 ,

"name” : 7" Kilogramas” ,
?description”: ”Kilogramas” ,
”exponent”: 2

First, the user uses the ListOrders query to select and check the order id of the order
he wants to buy. Second, the invoking of the MakeTransaction using as arguments the

transaction id, amount of the product, organization id of the user, and order id.

Listing 5.4: Make Transaction

peer chaincode invoke —o localhost:7050 —ordererTLSHostnameOverride orderer.e

2021—-11-30 00:32:34.997 UTC [chaincodeCmd]| chaincodeInvokeOrQuery —> INFO 001

The request then gets a response from the peer node with a success or failure message.
If successful, the order is correctly inserted into the ledger, otherwise, the problem is

presented to the user and he can fix the issue. Some failure messages examples are:

e "order id not found” - the order does not exist
e "organization id not found” - the organization does not exist
e 7invalid amount to transact” - the amount overflows the amount left for selling

e "the asset already exists” - already exists a transaction with that id

Listing 5.5: List Transactions

peer chaincode query —C mychannel —n basic—1 —c¢ ’{”Args”:[” ListTransactionsFor

”id”: 7unit_transaction —1",

Page 88 of 95



Chapter 5. Results and Analysis

7amount” : 100,
?description”: 77|
"status”: "OPEN” |

"organization_id”: ”produtor—papel”

"order_id”: ”order—1”

Page 89 of 95



Chapter 6

Conclusion

The Industrial Symbiosis movement is trying to help the world by preventing the
waste of by-products and making industries greener. Blockchain solutions, when applied
to Industrial Symbiosis systems, can help it reach a global scale, making the world more
sustainable. In particular, blockchain-based system can improve the Industrial Symbiosis
process between companies by assuring trust between of entities and transparency of their
transactions. This thesis proposes a blockchain architecture design to enhance the Indus-
trial Symbiosis process of the Pulp, Paper, and Cardboard Production Sector Companies
in Portugal, providing the required trust and transparency to a network to enhance their
Industrial Symbiosis process.

The proposed architecture uses a permissioned ledger. Hyperledger Fabric is the kernel
of the network allowing the necessary customization for the adopted scenario. Chaincode
and Attribute-Based Access Control of the Hyperledger Fabric are the key pieces of the
implementation. Using chaincode it is possible to implement the required logic that allows
users to create orders and transactions.

The proposed blockchain-based solution was found to have advantages when compared
to the traditional systems. Firstly, it enables fast transactions and quick integration of
a new organization into the network. Then, the fact that the blockchain records every
transaction makes it easier to audit. Finally, the blockchain-based system makes it easier
to scale as it just requires each new company to setup one peer and one CA node.

As future work, some improvements were already identified. The first improvement

is the development of a front-end web application to prevent users from using the Hy-

Page 90 of 95



Chapter 6. Conclusion

perledger Fabric’s command-line interface. Another improvement can be in the speed of
the transactions, which can improve by adding a built-in cryptocurrency to remove the

manual intervention on payments.

Page 91 of 95



References

G. Alexandris et al. “Blockchains as Enablers for Auditing Cooperative Circular
Economy Networks”. In: 2018 IEEE 23rd International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks (CAMAD). 2018,

pp. 1-7. DOI: 10.1109/CAMAD.2018.8514985.

Elli Androulaki et al. “Hyperledger fabric: a distributed operating system for per-
missioned blockchains”. In: Proceedings of the thirteenth FuroSys conference. 2018,

pp. 1-15.

Fabrice Benhamouda, Shai Halevi, and Tzipora Halevi. “Supporting private data
on hyperledger fabric with secure multiparty computation”. In: IBM Journal of

Research and Development 63.2/3 (2019), pp. 3—1.

Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. “Cryptocurrencies without proof
of work”. In: International conference on financial cryptography and data security.

Springer. 2016, pp. 142-157.

Alexa Bockel, Anne-Katrin Nuzum, and Ilka Weissbrod. “Blockchain for the Circular
Economy: Analysis of the Research-Practice Gap”. In: Sustainable Production and
Consumption 25 (2021), pp. 525-539. 1sSN: 2352-5509. DOI: https://doi.org/10.
1016/ j .spc.2020.12.006. URL: https://www.sciencedirect.com/science/

article/pii/S2352550920314056.
Vitalik Buterin. “What is Ethereum?” In: Accessed on: Dec 15 (2013).

Christian Cachin et al. “Architecture of the hyperledger blockchain fabric”. In:
Workshop on distributed cryptocurrencies and consensus ledgers. Vol. 310. 4. Chicago,

IL. 2016.

Page 92 of 95


https://doi.org/10.1109/CAMAD.2018.8514985
https://doi.org/https://doi.org/10.1016/j.spc.2020.12.006
https://doi.org/https://doi.org/10.1016/j.spc.2020.12.006
https://www.sciencedirect.com/science/article/pii/S2352550920314056
https://www.sciencedirect.com/science/article/pii/S2352550920314056

References

[10]

[11]

[12]

[14]

Marian R Chertow. “Industrial symbiosis: literature and taxonomy”. In: Annual

review of energy and the environment 25.1 (2000), pp. 313-337.

Shauhrat S Chopra and Vikas Khanna. “Understanding resilience in industrial sym-
biosis networks: Insights from network analysis”. In: Journal of environmental man-

agement 141 (2014), pp. 86-94.

Vikram Dhillon, David Metcalf, and Max Hooper. “The hyperledger project”. In:

Blockchain enabled applications. Springer, 2017, pp. 139-149.

Vitalik Buterin Fabian Vogelsteller. “EIP-20: ERC-20 Token Standard”. In: Ethereum

Improvement Proposals 20 (2015).

Ghareeb Falazi et al. “Process-based composition of permissioned and permission-
less blockchain smart contracts”. In: 2019 IEEE 23rd International Enterprise Dis-

tributed Object Computing Conference (EDOC). IEEE. 2019, pp. 77-87.

Inés A Ferreira, Marta S Barreiros, and Helena Carvalho. “The industrial symbiosis
network of the biomass fluidized bed boiler sand—Mapping its value network”. In:

Resources, Conservation and Recycling 149 (2019), pp. 595-604.

Inés A Ferreira, Marta S Barreiros, and Helena Carvalho. “The industrial symbiosis
network of the biomass fluidized bed boiler sand—Mapping its value network”. In:

Resources, Conservation and Recycling 149 (2019), pp. 595-604.

Arthur Gervais et al. “On the security and performance of proof of work blockchains”.
In: Proceedings of the 2016 ACM SIGSAC conference on computer and communica-

tions security. 2016, pp. 3-16.

Ricardo Gongalves et al. “A Smart Contract Architecture to Enhance the Industrial
Symbiosis Process Between the Pulp and Paper Companies - A Case Study”. In:
Blockchain and Applications. Ed. by Javier Prieto et al. Cham: Springer Interna-
tional Publishing, 2022, pp. 252-260. 1SBN: 978-3-030-86162-9.

Wenting Jiao and Frank Boons. “Toward a research agenda for policy intervention
and facilitation to enhance industrial symbiosis based on a comprehensive literature

review”. In: Journal of Cleaner Production 67 (2014), pp. 14-25.

Page 93 of 95



References

[22]

Paraskevi Katsiampa. “Volatility co-movement between Bitcoin and Ether”. In: Fi-

nance Research Letters 30 (2019), pp. 221-227.

Mirko Koscina, Mariusz Lombard-Platet, and Pierre Cluchet. “Plasticcoin: an erc20
implementation on hyperledger fabric for circular economy and plastic reuse”. In:
IEEE/WIC/ACM International Conference on Web Intelligence-Companion Vol-

ume. 2019, pp. 223-230.

Mahtab Kouhizadeh and Joseph Sarkis. “Blockchain practices, potentials, and per-

spectives in greening supply chains”. In: Sustainability 10.10 (2018), p. 3652.

Mahtab Kouhizadeh, Joseph Sarkis, and Qingyun Zhu. “At the nexus of blockchain
technology, the circular economy, and product deletion”. In: Applied Sciences 9.8

(2019), p. 1712.

Mahtab Kouhizadeh, Qingyun Zhu, and Joseph Sarkis. “Blockchain and the circular
economy: potential tensions and critical reflections from practice”. In: Production

Planning €& Control 31.11-12 (2020), pp. 950-966.

Andrew Miller. “Permissioned and permissionless blockchains”. In: Blockchain for

Distributed Systems Security (2019), pp. 193-204.

Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish Jena. “An overview
of smart contract and use cases in blockchain technology”. In: 2018 9th Inter-

national Conference on Computing, Communication and Networking Technologies

(ICCCNT). IEEE. 2018, pp. 1-4.

Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: Decentral-

ized Business Review (2008), p. 21260.

David Cecil Smith, Angela Elizabeth Douglas, et al. The biology of symbiosis. Ed-
ward Arnold (Publishers) Ltd., 1987.

Christof Ferreira Torres, Mathis Steichen, et al. “The art of the scam: Demystifying
honeypots in ethereum smart contracts”. In: 28th { USENIX} Security Symposium
({USENIX} Security 19). 2019, pp. 1591-1607.

Sarah Underwood. “Blockchain beyond bitcoin”. In: Communications of the ACM

59.11 (2016), pp. 15-17.

Page 94 of 95



References

[29] Martin Valenta and Philipp Sandner. “Comparison of ethereum, hyperledger fabric
and corda”. In: Frankfurt School Blockchain Center 8 (2017).

Page 95 of 95



	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Context
	Objective
	Contributions
	Organization

	Background and Related Work
	Blockchain & Smart contracts
	Ethereum
	Hyperledger Fabric
	Orderers
	Peers
	Chaincode
	Channels

	Etherum vs Hyperledger
	Related Work on Application of smart contracts

	Proposed Solution
	Requirements
	Design
	Architecture

	Implementation
	General files
	Unit
	Structure
	Get Unit ID
	Create Unit
	Unit Exists
	Get Unit
	List Units
	Delete Unit

	Product
	Structure
	Get Product ID
	Product Exist
	Create Product
	Get Product
	List Products
	Delete Product

	Organization
	Structure
	Get Organization ID
	Organization Exist
	Create Organization
	Update Organization
	Get Organization
	List Organizations
	Delete Organization

	Order
	Structure
	Order Type
	Order Status
	Get Order
	Order Exist
	Create Order
	Close Order
	Get Order
	List Orders

	Transaction
	Structure
	Transaction Status
	Get Transaction ID
	Transaction Exist
	Make Transaction
	Change Transaction Status
	Get Transaction
	List Transactions


	Results and Analysis
	Creation a New Organization
	Removing an Organization
	Creating a new sell order
	Buying a product

	Conclusion
	References

